File size: 3,378 Bytes
9f21f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import json, os
import pandas as pd
import google.generativeai as genai

# Function to process text input with Gemini model
def query_Modifier(input_text):

    gemini_key = os.getenv("GEMINI")
    if not gemini_key:
        raise ValueError("GEMINI environment variable not found. Please set it before running the script.")

    # Initialize the API key
    genai.configure(api_key=gemini_key)

    # print(gemini_key)

    # Load the prompt from file
    with open("Query_Modification/prompt.txt", 'r') as file:
        PROMPT_TEMPLATE = file.read()

    # Safety settings for Gemini model
    safe = [
        {
            "category": "HARM_CATEGORY_DANGEROUS",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HARASSMENT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HATE_SPEECH",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
            "threshold": "BLOCK_NONE",
        },
    ]

    generation_config = {
        "temperature": 1,
        "top_p": 0.95,
        "top_k": 40,
        "max_output_tokens": 8192,
        "response_mime_type": "text/plain",
    }
    
    # Initialize the generative model
    model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)

    
    full_prompt = f"{input_text}\n\n{PROMPT_TEMPLATE}"
                
    # Call the generative model for text input
    result = model.generate_content([full_prompt], safety_settings=safe)
    return result.text


def getKeywords(input_text):
    # Extract keywords from the input text

    gemini_key = os.getenv("GEMINI")
    if not gemini_key:
        raise ValueError("GEMINI environment variable not found. Please set it before running the script.")

    # Initialize the API key
    genai.configure(api_key=gemini_key)

    # Safety settings for Gemini model
    safe = [
        {
            "category": "HARM_CATEGORY_DANGEROUS",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HARASSMENT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HATE_SPEECH",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
            "threshold": "BLOCK_NONE",
        },
    ]

    generation_config = {
        "temperature": 1,
        "top_p": 0.95,
        "top_k": 40,
        "max_output_tokens": 8192,
        "response_mime_type": "text/plain",
    }
    
    # Initialize the generative model
    model = genai.GenerativeModel("gemini-1.5-flash", generation_config=generation_config)

    
    full_prompt = f"{input_text} \n\n Give the Keywords for the above sentence and output nothing else."
                
    # Call the generative model for text input
    result = model.generate_content([full_prompt], safety_settings=safe)

    response = result.text
    response = response.replace("Keywords:", "")
    response = response.replace(",", "")

    return response.strip()