|
import gradio as gr |
|
import json |
|
|
|
|
|
from Agents.togetherAIAgent import generate_article_from_query |
|
from Agents.wikiAgent import get_wiki_data |
|
from Agents.rankerAgent import rankerAgent |
|
from Query_Modification.QueryModification import query_Modifier, getKeywords |
|
from Ranking.RRF.RRF_implementation import reciprocal_rank_fusion_three, reciprocal_rank_fusion_six |
|
from Retrieval.tf_idf import tf_idf_pipeline |
|
from Retrieval.bm25 import bm25_pipeline |
|
from Retrieval.vision import vision_pipeline |
|
from Retrieval.openSource import open_source_pipeline |
|
from Baseline.boolean import boolean_pipeline |
|
from AnswerGeneration.getAnswer import generate_answer_withContext, generate_answer_zeroShot |
|
|
|
|
|
miniWikiCollection = json.load(open('Datasets/mini_wiki_collection.json', 'r')) |
|
miniWikiCollectionDict = {wiki['wikipedia_id']: " ".join(wiki['text']) for wiki in miniWikiCollection} |
|
|
|
def process_query(query): |
|
|
|
modified_query = query_Modifier(query) |
|
|
|
|
|
article = generate_article_from_query(query) |
|
|
|
|
|
keywords = getKeywords(query) |
|
wiki_data = get_wiki_data(keywords) |
|
|
|
|
|
boolean_ranking = boolean_pipeline(query) |
|
tf_idf_ranking = tf_idf_pipeline(query) |
|
bm25_ranking = bm25_pipeline(query) |
|
vision_ranking = vision_pipeline(query) |
|
open_source_ranking = open_source_pipeline(query) |
|
|
|
|
|
boolean_ranking_modified = boolean_pipeline(modified_query) |
|
tf_idf_ranking_modified = tf_idf_pipeline(modified_query) |
|
bm25_ranking_modified = bm25_pipeline(modified_query) |
|
vision_ranking_modified = vision_pipeline(modified_query) |
|
open_source_ranking_modified = open_source_pipeline(modified_query) |
|
|
|
|
|
tf_idf_bm25_open_RRF_Ranking = reciprocal_rank_fusion_three(tf_idf_ranking, bm25_ranking, open_source_ranking) |
|
tf_idf_bm25_open_RRF_Ranking_modified = reciprocal_rank_fusion_three(tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified) |
|
tf_idf_bm25_open_RRF_Ranking_combined = reciprocal_rank_fusion_six( |
|
tf_idf_ranking, bm25_ranking, open_source_ranking, |
|
tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified |
|
) |
|
|
|
|
|
boolean_context = miniWikiCollectionDict[boolean_ranking[0]] |
|
tf_idf_context = miniWikiCollectionDict[tf_idf_ranking[0]] |
|
bm25_context = miniWikiCollectionDict[str(bm25_ranking[0])] |
|
vision_context = miniWikiCollectionDict[vision_ranking[0]] |
|
open_source_context = miniWikiCollectionDict[open_source_ranking[0]] |
|
|
|
tf_idf_bm25_open_RRF_Ranking_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking[0]] |
|
|
|
|
|
agent1_context = wiki_data[0] |
|
agent2_context = article |
|
|
|
agent1_answer = generate_answer_withContext(query, agent1_context) |
|
agent2_answer = generate_answer_withContext(query, agent2_context) |
|
boolean_answer = generate_answer_withContext(query, boolean_context) |
|
tf_idf_answer = generate_answer_withContext(query, tf_idf_context) |
|
bm25_answer = generate_answer_withContext(query, bm25_context) |
|
vision_answer = generate_answer_withContext(query, vision_context) |
|
open_source_answer = generate_answer_withContext(query, open_source_context) |
|
|
|
tf_idf_bm25_open_RRF_Ranking_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_context) |
|
|
|
zeroShot = generate_answer_zeroShot(query) |
|
|
|
|
|
rankerAgentInput = { |
|
"query": query, |
|
"agent1": agent1_answer, |
|
"agent2": agent2_answer, |
|
"boolean": boolean_answer, |
|
"tf_idf": tf_idf_answer, |
|
"bm25": bm25_answer, |
|
"vision": vision_answer, |
|
"open_source": open_source_answer, |
|
"tf_idf_bm25_open_RRF_Ranking": tf_idf_bm25_open_RRF_Ranking_answer, |
|
"zeroShot": zeroShot, |
|
} |
|
|
|
best_model, best_answer = rankerAgent(rankerAgentInput) |
|
|
|
return best_model, best_answer |
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_query, |
|
inputs=gr.Textbox(label="Enter your query"), |
|
outputs=[ |
|
gr.Textbox(label="Best Model"), |
|
gr.Textbox(label="Best Answer"), |
|
], |
|
title="Query Answering System", |
|
description="Enter a query to get the best model and the best answer using multiple retrieval models and ranking techniques.", |
|
allow_flagging="never" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|