import gradio as gr import json # Import your modules here from Agents.togetherAIAgent import generate_article_from_query from Agents.wikiAgent import get_wiki_data from Agents.rankerAgent import rankerAgent from Query_Modification.QueryModification import query_Modifier, getKeywords from Ranking.RRF.RRF_implementation import reciprocal_rank_fusion_three, reciprocal_rank_fusion_six from Retrieval.tf_idf import tf_idf_pipeline from Retrieval.bm25 import bm25_pipeline from Retrieval.vision import vision_pipeline from Retrieval.openSource import open_source_pipeline from Baseline.boolean import boolean_pipeline from AnswerGeneration.getAnswer import generate_answer_withContext, generate_answer_zeroShot # Load miniWikiCollection miniWikiCollection = json.load(open('Datasets/mini_wiki_collection.json', 'r')) miniWikiCollectionDict = {wiki['wikipedia_id']: " ".join(wiki['text']) for wiki in miniWikiCollection} def process_query(query): # Query modification modified_query = query_Modifier(query) # Context Generation article = generate_article_from_query(query) # Keyword Extraction and getting context from Wiki keywords = getKeywords(query) wiki_data = get_wiki_data(keywords) # Retrieve rankings boolean_ranking = boolean_pipeline(query) tf_idf_ranking = tf_idf_pipeline(query) bm25_ranking = bm25_pipeline(query) vision_ranking = vision_pipeline(query) open_source_ranking = open_source_pipeline(query) # Modified queries boolean_ranking_modified = boolean_pipeline(modified_query) tf_idf_ranking_modified = tf_idf_pipeline(modified_query) bm25_ranking_modified = bm25_pipeline(modified_query) vision_ranking_modified = vision_pipeline(modified_query) open_source_ranking_modified = open_source_pipeline(modified_query) # RRF rankings tf_idf_bm25_open_RRF_Ranking = reciprocal_rank_fusion_three(tf_idf_ranking, bm25_ranking, open_source_ranking) tf_idf_bm25_open_RRF_Ranking_modified = reciprocal_rank_fusion_three(tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified) tf_idf_bm25_open_RRF_Ranking_combined = reciprocal_rank_fusion_six( tf_idf_ranking, bm25_ranking, open_source_ranking, tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified ) # Retrieve contexts boolean_context = miniWikiCollectionDict[boolean_ranking[0]] tf_idf_context = miniWikiCollectionDict[tf_idf_ranking[0]] bm25_context = miniWikiCollectionDict[str(bm25_ranking[0])] vision_context = miniWikiCollectionDict[vision_ranking[0]] open_source_context = miniWikiCollectionDict[open_source_ranking[0]] tf_idf_bm25_open_RRF_Ranking_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking[0]] # Generating answers agent1_context = wiki_data[0] agent2_context = article agent1_answer = generate_answer_withContext(query, agent1_context) agent2_answer = generate_answer_withContext(query, agent2_context) boolean_answer = generate_answer_withContext(query, boolean_context) tf_idf_answer = generate_answer_withContext(query, tf_idf_context) bm25_answer = generate_answer_withContext(query, bm25_context) vision_answer = generate_answer_withContext(query, vision_context) open_source_answer = generate_answer_withContext(query, open_source_context) tf_idf_bm25_open_RRF_Ranking_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_context) zeroShot = generate_answer_zeroShot(query) # Ranking the best answer rankerAgentInput = { "query": query, "agent1": agent1_answer, "agent2": agent2_answer, "boolean": boolean_answer, "tf_idf": tf_idf_answer, "bm25": bm25_answer, "vision": vision_answer, "open_source": open_source_answer, "tf_idf_bm25_open_RRF_Ranking": tf_idf_bm25_open_RRF_Ranking_answer, "zeroShot": zeroShot, } best_model, best_answer = rankerAgent(rankerAgentInput) return best_model, best_answer # Gradio interface interface = gr.Interface( fn=process_query, inputs=gr.Textbox(label="Enter your query"), outputs=[ gr.Textbox(label="Best Model"), gr.Textbox(label="Best Answer"), ], title="Query Answering System", description="Enter a query to get the best model and the best answer using multiple retrieval models and ranking techniques.", allow_flagging="never" ) # Launch the interface if __name__ == "__main__": interface.launch()