Spaces:
Runtime error
Runtime error
File size: 12,292 Bytes
eb0678a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Based on https://github.com/haotian-liu/LLaVA.
import os
import ast
import json
import openai
import argparse
from tqdm import tqdm
from time import sleep
from collections import defaultdict
from multiprocessing.pool import Pool
def parse_args():
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
parser.add_argument("--pred_path", required=True, help="The path to file containing prediction.")
parser.add_argument("--output_dir", required=True, help="The path to save annotation json files.")
parser.add_argument("--output_json", required=True, help="The path to save annotation final combined json file.")
parser.add_argument("--num_tasks", required=True, type=int, help="Number of splits.")
parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
parser.add_argument("--api_key", required=True, type=str, help="OpenAI API key")
parser.add_argument("--api_type", default=None, type=str, help="OpenAI API type")
parser.add_argument("--api_version", default=None, type=str, help="OpenAI API version")
parser.add_argument("--api_base", default=None, type=str, help="OpenAI API base")
args = parser.parse_args()
return args
def annotate(prediction_set, caption_files, output_dir):
"""
Evaluates question and answer pairs using GPT-3
Returns a score for correctness.
"""
for file in tqdm(caption_files):
key = file[:-5] # Strip file extension
qa_set = prediction_set[key]
question = qa_set['q']
answer = qa_set['a']
pred = qa_set['pred']
try:
# Compute the correctness score
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content":
"You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the answer."
},
{
"role": "user",
"content":
"Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
}
],
temperature=0.002
)
# Convert response to a Python dictionary.
response_message = completion["choices"][0]["message"]["content"]
response_dict = ast.literal_eval(response_message)
result_qa_pair = [response_dict, qa_set]
# Save the question-answer pairs to a json file.
with open(f"{output_dir}/{key}.json", "w") as f:
json.dump(result_qa_pair, f)
sleep(0.5)
except Exception as e:
print(f"Error processing file '{key}': {e}")
sleep(1)
def main():
"""
Main function to control the flow of the program.
"""
# Parse arguments.
args = parse_args()
if args.num_chunks > 1:
pred_contents = []
for _idx in range(args.num_chunks):
file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
pred_contents += [json.loads(line) for line in open(file)]
else:
file = os.path.join(args.pred_path, f"pred.json")
pred_contents = [json.loads(line) for line in open(file)]
# Dictionary to store the count of occurrences for each video_id
video_id_counts = {}
new_pred_contents = []
# Iterate through each sample in pred_contents
for sample in pred_contents:
video_id = sample['id']
if video_id in video_id_counts:
video_id_counts[video_id] += 1
else:
video_id_counts[video_id] = 0
# Create a new sample with the modified key
new_sample = sample
new_sample['id'] = f"{video_id}_{video_id_counts[video_id]}"
new_pred_contents.append(new_sample)
# Generating list of id's and corresponding files
id_list = [x['id'] for x in new_pred_contents]
caption_files = [f"{id}.json" for id in id_list]
output_dir = args.output_dir
# Generate output directory if not exists.
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Preparing dictionary of question-answer sets
prediction_set = {}
for sample in new_pred_contents:
id = sample['id']
question = sample['question']
answer = sample['answer']
pred = sample['pred']
qa_set = {"q": question, "a": answer, "pred": pred, "a_type": sample['answer_type'] if 'answer_type' in sample else None}
prediction_set[id] = qa_set
# Set the OpenAI API key.
openai.api_key = args.api_key # Your API key here
if args.api_type:
openai.api_type = args.api_type
if args.api_version:
openai.api_version = args.api_version
if args.api_base:
openai.api_base = args.api_base # Your API base here
num_tasks = args.num_tasks
# While loop to ensure that all captions are processed.
incomplete_lengths = []
for _ in range(100):
try:
# Files that have not been processed yet.
completed_files = os.listdir(output_dir)
print(f"completed_files: {len(completed_files)}")
# Files that have not been processed yet.
incomplete_files = [f for f in caption_files if f not in completed_files]
print(f"incomplete_files: {len(incomplete_files)}")
incomplete_lengths.append(len(incomplete_files))
if len(incomplete_lengths) > 5 and len(set(incomplete_lengths[-5:])) <= 1:
print(f"incomplete_lengths: {incomplete_lengths}")
print(f"incomplete_files: {incomplete_files}")
print(f"completed_files: {completed_files}")
print(f"failed for 5 times, break")
break
# Break the loop when there are no incomplete files
if len(incomplete_files) == 0:
break
if len(incomplete_files) <= num_tasks:
num_tasks = 1
# Split tasks into parts.
part_len = len(incomplete_files) // num_tasks
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
# Use a pool of workers to process the files in parallel.
with Pool() as pool:
pool.starmap(annotate, task_args)
except Exception as e:
print(f"Error: {e}")
# Combine all the processed files into one
combined_contents = {}
json_path = args.output_json
# Iterate through json files
for file_name in os.listdir(output_dir):
if file_name.endswith(".json"):
file_path = os.path.join(output_dir, file_name)
with open(file_path, "r") as json_file:
content = json.load(json_file)
assert 'pred' in content[0], f"Error: {file_name} don't has key=pred"
assert 'score' in content[0], f"Error: {file_name} don't has key=score"
combined_contents[file_name[:-5]] = content
# Write combined content to a json file
with open(json_path, "w") as json_file:
json.dump(combined_contents, json_file)
print("All evaluation completed!")
class ScoreMeter:
def __init__(self):
self.score_sum = 0
self.count = 0
self.yes_count = 0
self.no_count = 0
self.score_dict = {'yes': defaultdict(int), 'no': defaultdict(int)}
def add_score(self, score, pred):
self.score_sum += score
self.count += 1
pred_lower = pred.lower()
if 'yes' in pred_lower:
self.yes_count += 1
self.score_dict['yes'][score] += 1
elif 'no' in pred_lower:
self.no_count += 1
self.score_dict['no'][score] += 1
def get_average_score(self):
res = (self.score_sum / self.count) if self.count else 0
return f"{res:.6f}"
def get_accuracy(self, response_type):
if response_type == 'yes':
res = (self.yes_count / self.count) if self.count else 0
elif response_type == 'no':
res = (self.no_count / self.count) if self.count else 0
else:
res = 0
return f"{res:.6f}"
meter_dic = {'total': ScoreMeter()}
for key, result in combined_contents.items():
# Computing score
score_match = result[0]['score']
score = int(score_match)
pred = result[0]['pred']
meter_dic["total"].add_score(score, pred)
if 'a_type' in result[1] and result[1]['a_type'] is not None:
typ = str(result[1]['a_type'])
if typ not in meter_dic:
meter_dic[typ] = ScoreMeter()
meter_dic[typ].add_score(score, pred)
if 'next' in args.output_dir:
typ = typ[0]
if typ not in meter_dic:
meter_dic[typ] = ScoreMeter()
meter_dic[typ].add_score(score, pred)
csv_dic = {'acc': meter_dic["total"].get_accuracy('yes'), 'score': meter_dic["total"].get_average_score()}
output = ""
output += "Yes count: " + str(meter_dic["total"].yes_count) + "\n"
output += "No count: " + str(meter_dic["total"].no_count) + "\n"
output += "Accuracy: " + str(meter_dic["total"].get_accuracy('yes')) + "\n"
output += "Average score: " + str(meter_dic["total"].get_average_score()) + "\n"
output += "\n"
output += "Total Score Yes/No distribution:\n"
for key, value in meter_dic["total"].score_dict.items():
output += f"{key}:\n"
for k in range(0, 6):
v = value[k]
output += f"{k}: {v}\n"
output += "\n"
output += "Answer Type Score distribution:\n"
output += 'Type, Accuracy, Avg_score\n'
key_list = sorted([k for k in meter_dic.keys()])
for key in key_list:
output += f"{key}, {meter_dic[key].get_accuracy('yes')}, {meter_dic[key].get_average_score()}\n"
csv_dic[key] = meter_dic[key].get_accuracy('yes')
output += "\n"
for k in csv_dic.keys():
output += f"{k}, "
output = output.rstrip(', ') # Remove the trailing comma and space
output += "\n"
for k in csv_dic.keys():
output += str(csv_dic[k]) + ", "
output = output.rstrip(', ') # Remove the trailing comma and space
output += "\n"
print(output)
args.output_csv = args.output_json.replace(".json", ".csv")
with open(args.output_csv, 'w') as f:
f.write(output)
if __name__ == "__main__":
main()
|