File size: 12,292 Bytes
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Based on https://github.com/haotian-liu/LLaVA.

import os
import ast
import json
import openai
import argparse
from tqdm import tqdm
from time import sleep
from collections import defaultdict
from multiprocessing.pool import Pool

def parse_args():
    parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
    parser.add_argument("--pred_path", required=True, help="The path to file containing prediction.")
    parser.add_argument("--output_dir", required=True, help="The path to save annotation json files.")
    parser.add_argument("--output_json", required=True, help="The path to save annotation final combined json file.")
    parser.add_argument("--num_tasks", required=True, type=int, help="Number of splits.")
    parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
    parser.add_argument("--api_key", required=True, type=str, help="OpenAI API key")
    parser.add_argument("--api_type", default=None, type=str, help="OpenAI API type")
    parser.add_argument("--api_version", default=None, type=str, help="OpenAI API version")
    parser.add_argument("--api_base", default=None, type=str, help="OpenAI API base")
    args = parser.parse_args()
    return args


def annotate(prediction_set, caption_files, output_dir):
    """
    Evaluates question and answer pairs using GPT-3
    Returns a score for correctness.
    """
    for file in tqdm(caption_files):
        key = file[:-5] # Strip file extension
        qa_set = prediction_set[key]
        question = qa_set['q']
        answer = qa_set['a']
        pred = qa_set['pred']
        try:
            # Compute the correctness score
            completion = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[
                    {
                        "role": "system",
                        "content": 
                            "You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
                            "Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:"
                            "------"
                            "##INSTRUCTIONS: "
                            "- Focus on the meaningful match between the predicted answer and the correct answer.\n"
                            "- Consider synonyms or paraphrases as valid matches.\n"
                            "- Evaluate the correctness of the prediction compared to the answer."
                    },
                    {
                        "role": "user",
                        "content":
                            "Please evaluate the following video-based question-answer pair:\n\n"
                            f"Question: {question}\n"
                            f"Correct Answer: {answer}\n"
                            f"Predicted Answer: {pred}\n\n"
                            "Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. "
                            "Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is  a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING."
                            "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
                            "For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
                    }
                ],
                temperature=0.002
            )
            # Convert response to a Python dictionary.
            response_message = completion["choices"][0]["message"]["content"]
            response_dict = ast.literal_eval(response_message)
            result_qa_pair = [response_dict, qa_set]

            # Save the question-answer pairs to a json file.
            with open(f"{output_dir}/{key}.json", "w") as f:
                json.dump(result_qa_pair, f)
            sleep(0.5)

        except Exception as e:
            print(f"Error processing file '{key}': {e}")
            sleep(1)


def main():
    """
    Main function to control the flow of the program.
    """
    # Parse arguments.
    args = parse_args()

    if args.num_chunks > 1:
        pred_contents = []
        for _idx in range(args.num_chunks):
            file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
            pred_contents += [json.loads(line) for line in open(file)]
        
    else:
        file = os.path.join(args.pred_path, f"pred.json")
        pred_contents = [json.loads(line) for line in open(file)]

    # Dictionary to store the count of occurrences for each video_id
    video_id_counts = {}
    new_pred_contents = []

    # Iterate through each sample in pred_contents
    for sample in pred_contents:
        video_id = sample['id']
        if video_id in video_id_counts:
            video_id_counts[video_id] += 1
        else:
            video_id_counts[video_id] = 0

        # Create a new sample with the modified key
        new_sample = sample
        new_sample['id'] = f"{video_id}_{video_id_counts[video_id]}"
        new_pred_contents.append(new_sample)

    # Generating list of id's and corresponding files
    id_list = [x['id'] for x in new_pred_contents]
    caption_files = [f"{id}.json" for id in id_list]

    output_dir = args.output_dir
    # Generate output directory if not exists.
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Preparing dictionary of question-answer sets
    prediction_set = {}
    for sample in new_pred_contents:
        id = sample['id']
        question = sample['question']
        answer = sample['answer']
        pred = sample['pred']
        qa_set = {"q": question, "a": answer, "pred": pred, "a_type": sample['answer_type'] if 'answer_type' in sample else None}
        prediction_set[id] = qa_set

    # Set the OpenAI API key.
    openai.api_key = args.api_key # Your API key here
    if args.api_type:
        openai.api_type = args.api_type
    if args.api_version:
        openai.api_version = args.api_version
    if args.api_base:
        openai.api_base = args.api_base # Your API base here
    num_tasks = args.num_tasks

    # While loop to ensure that all captions are processed.
    incomplete_lengths = []
    for _ in range(100):
        try:
            # Files that have not been processed yet.
            completed_files = os.listdir(output_dir)
            print(f"completed_files: {len(completed_files)}")

            # Files that have not been processed yet.
            incomplete_files = [f for f in caption_files if f not in completed_files]
            print(f"incomplete_files: {len(incomplete_files)}")
            incomplete_lengths.append(len(incomplete_files))
            if len(incomplete_lengths) > 5 and len(set(incomplete_lengths[-5:])) <= 1:
                print(f"incomplete_lengths: {incomplete_lengths}")
                print(f"incomplete_files: {incomplete_files}")
                print(f"completed_files: {completed_files}")
                print(f"failed for 5 times, break")
                break

            # Break the loop when there are no incomplete files
            if len(incomplete_files) == 0:
                break
            if len(incomplete_files) <= num_tasks:
                num_tasks = 1

            # Split tasks into parts.
            part_len = len(incomplete_files) // num_tasks
            all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
            task_args = [(prediction_set, part, args.output_dir) for part in all_parts]

            # Use a pool of workers to process the files in parallel.
            with Pool() as pool:
                pool.starmap(annotate, task_args)

        except Exception as e:
            print(f"Error: {e}")

    # Combine all the processed files into one
    combined_contents = {}
    json_path = args.output_json

    # Iterate through json files
    for file_name in os.listdir(output_dir):
        if file_name.endswith(".json"):
            file_path = os.path.join(output_dir, file_name)
            with open(file_path, "r") as json_file:
                content = json.load(json_file)
                assert 'pred' in content[0], f"Error: {file_name} don't has key=pred"
                assert 'score' in content[0], f"Error: {file_name} don't has key=score"
                combined_contents[file_name[:-5]] = content

    # Write combined content to a json file
    with open(json_path, "w") as json_file:
        json.dump(combined_contents, json_file)
    print("All evaluation completed!")

    class ScoreMeter:
        def __init__(self):
            self.score_sum = 0
            self.count = 0
            self.yes_count = 0
            self.no_count = 0
            self.score_dict = {'yes': defaultdict(int), 'no': defaultdict(int)}

        def add_score(self, score, pred):
            self.score_sum += score
            self.count += 1
            pred_lower = pred.lower()
            if 'yes' in pred_lower:
                self.yes_count += 1
                self.score_dict['yes'][score] += 1
            elif 'no' in pred_lower:
                self.no_count += 1
                self.score_dict['no'][score] += 1

        def get_average_score(self):
            res = (self.score_sum / self.count) if self.count else 0
            return f"{res:.6f}"

        def get_accuracy(self, response_type):
            if response_type == 'yes':
                res =  (self.yes_count / self.count) if self.count else 0
            elif response_type == 'no':
                res = (self.no_count / self.count) if self.count else 0
            else:
                res = 0
            return f"{res:.6f}"

    meter_dic = {'total': ScoreMeter()}
    for key, result in combined_contents.items():
        # Computing score
        score_match = result[0]['score']
        score = int(score_match)
        pred = result[0]['pred']

        meter_dic["total"].add_score(score, pred)
        if 'a_type' in result[1] and result[1]['a_type'] is not None:
            typ = str(result[1]['a_type'])
            if typ not in meter_dic:
                meter_dic[typ] = ScoreMeter()
            meter_dic[typ].add_score(score, pred)

            if 'next' in args.output_dir:
                typ = typ[0]
                if typ not in meter_dic:
                    meter_dic[typ] = ScoreMeter()
                meter_dic[typ].add_score(score, pred)

    csv_dic = {'acc': meter_dic["total"].get_accuracy('yes'), 'score': meter_dic["total"].get_average_score()}

    output = ""
    output += "Yes count: " + str(meter_dic["total"].yes_count) + "\n"
    output += "No count: " + str(meter_dic["total"].no_count) + "\n"
    output += "Accuracy: " + str(meter_dic["total"].get_accuracy('yes')) + "\n"
    output += "Average score: " + str(meter_dic["total"].get_average_score()) + "\n"
    output += "\n"
    output += "Total Score Yes/No distribution:\n"
    for key, value in meter_dic["total"].score_dict.items():
        output += f"{key}:\n"
        for k in range(0, 6):
            v = value[k]
            output += f"{k}: {v}\n"
    output += "\n"
    output += "Answer Type Score distribution:\n"
    output += 'Type, Accuracy, Avg_score\n'
    key_list = sorted([k for k in meter_dic.keys()])
    for key in key_list:
        output += f"{key}, {meter_dic[key].get_accuracy('yes')}, {meter_dic[key].get_average_score()}\n"
        csv_dic[key] = meter_dic[key].get_accuracy('yes')

    output += "\n"
    for k in csv_dic.keys():
        output += f"{k}, "
    output = output.rstrip(', ')  # Remove the trailing comma and space
    output += "\n"

    for k in csv_dic.keys():
        output += str(csv_dic[k]) + ", "
    output = output.rstrip(', ')  # Remove the trailing comma and space
    output += "\n"

    print(output)
    args.output_csv = args.output_json.replace(".json", ".csv")
    with open(args.output_csv, 'w') as f:
        f.write(output)

if __name__ == "__main__":
    main()