File size: 5,911 Bytes
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Based on https://github.com/haotian-liu/LLaVA.

import os
import json
import math
import torch
import argparse
from tqdm import tqdm
from decord import VideoReader, cpu

from llama_vstream.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llama_vstream.conversation import conv_templates, SeparatorStyle
from llama_vstream.model.builder import load_pretrained_model
from llama_vstream.utils import disable_torch_init
from llama_vstream.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def parse_args():
    """
    Parse command-line arguments.
    """
    parser = argparse.ArgumentParser()

    # Define the command-line arguments
    parser.add_argument('--video_dir', help='Directory containing video files.', required=True)
    parser.add_argument('--gt_file', help='Path to the ground truth file containing question.', required=True)
    parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True)
    parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True)
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--conv-mode", type=str, default=None)
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--model-max-length", type=int, default=None)

    return parser.parse_args()


def load_video(video_path):
    vr = VideoReader(video_path, ctx=cpu(0))
    total_frame_num = len(vr)
    fps = round(vr.get_avg_fps())
    frame_idx = [i for i in range(0, len(vr), fps)]
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    return spare_frames

    
def run_inference(args):
    """
    Run inference on ActivityNet QA DataSet using the Video-ChatGPT model.

    Args:
        args: Command-line arguments.
    """
    # Initialize the model
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.model_max_length)

    # Load both ground truth file containing questions and answers
    with open(args.gt_file) as file:
        gt_questions = json.load(file)
    gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)

    # Create the output directory if it doesn't exist
    if not os.path.exists(args.output_dir):
        try:
            os.makedirs(args.output_dir)
        except Exception as e:
            print(f'mkdir Except: {e}')

    video_formats = ['.mp4', '.avi', '.mov', '.mkv']
    if args.num_chunks > 1:
        output_name = f"{args.num_chunks}_{args.chunk_idx}"
    else:
        output_name = args.output_name
    answers_file = os.path.join(args.output_dir, f"{output_name}.json")
    ans_file = open(answers_file, "w")

    for sample in tqdm(gt_questions, desc=f"cuda:{args.chunk_idx} "):
        video_name = sample['video_id']
        question = sample['question']
        id = sample['id']
        answer = sample['answer']

        sample_set = {'id': id, 'question': question, 'answer': answer}

        # Load the video file
        for fmt in video_formats:  # Added this line
            temp_path = os.path.join(args.video_dir, f"{video_name}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                break

        # Check if the video exists
        if os.path.exists(video_path):
            video = load_video(video_path)
            video = image_processor.preprocess(video, return_tensors='pt')['pixel_values'].half().cuda()
            video = [video]
            
        qs = question
        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=video,
                do_sample=True,
                temperature=0.002,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        sample_set['pred'] = outputs
        ans_file.write(json.dumps(sample_set) + "\n")
        ans_file.flush()

    ans_file.close()


if __name__ == "__main__":
    args = parse_args()
    run_inference(args)