Flash-VStream-demo / flash_vstream /eval_video /model_msvd_qa_featuresloader.py
zhanghaoji
init
eb0678a
raw
history blame
7.63 kB
# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors.
# Based on https://github.com/haotian-liu/LLaVA.
import os
import json
import math
import torch
import random
import argparse
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from safetensors.torch import load_file
from llama_vstream.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llama_vstream.conversation import conv_templates, SeparatorStyle
from llama_vstream.model.builder import load_pretrained_model
from llama_vstream.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def parse_args():
"""
Parse command-line arguments.
"""
parser = argparse.ArgumentParser()
# Define the command-line arguments
parser.add_argument('--video_dir', help='Directory containing video files.', required=True)
parser.add_argument('--gt_file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True)
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True)
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--model-max-length", type=int, default=None)
return parser.parse_args()
class CustomDataset(Dataset):
def __init__(self, questions, video_dir, tokenizer, image_processor, model_config):
self.questions = questions
self.video_dir = video_dir
self.tokenizer = tokenizer
self.image_processor = image_processor
self.model_config = model_config
def __getitem__(self, index):
sample = self.questions[index]
video_name = sample['video_id']
try:
video_path = os.path.join(self.video_dir, video_name + '.safetensors')
video_tensor = load_file(video_path)['feature']
except Exception as e:
print(f'Dataset Exception: {e}, randomly choose one.')
idx = random.randint(0, len(self.questions) - 1)
return self.__getitem__(idx)
qs = sample['question']
if self.model_config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
if 'system' in sample:
conv.system = conv.system + ' ' + sample['system']
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
return input_ids, video_tensor
def __len__(self):
return len(self.questions)
def create_data_loader(questions, video_dir, tokenizer, image_processor, model_config, batch_size=1, num_workers=2):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, video_dir, tokenizer, image_processor, model_config)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
return data_loader
def run_inference(args):
"""
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model.
Args:
args: Command-line arguments.
"""
# Initialize the model
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.model_max_length)
# Load both ground truth file containing questions and answers
with open(args.gt_file) as file:
gt_questions = json.load(file)
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
# Create the output directory if it doesn't exist
if not os.path.exists(args.output_dir):
try:
os.makedirs(args.output_dir)
except Exception as e:
print(f'mkdir Except: {e}')
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
if args.num_chunks > 1:
output_name = f"{args.num_chunks}_{args.chunk_idx}"
else:
output_name = args.output_name
answers_file = os.path.join(args.output_dir, f"{output_name}.json")
# resume from old exp
exist_id_set = set()
if os.path.exists(answers_file):
with open(answers_file) as f:
exist_pred_contents = [json.loads(line) for line in f]
exist_id_set = set([x['id'] for x in exist_pred_contents])
new_gt_questions = []
for sample in tqdm(gt_questions):
if not sample['id'] in exist_id_set:
new_gt_questions.append(sample)
gt_questions = new_gt_questions
data_loader = create_data_loader(gt_questions, args.video_dir, tokenizer, image_processor, model.config)
conv = conv_templates[args.conv_mode].copy()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
with open(answers_file, "a") as ans_file:
for data, sample in tqdm(zip(data_loader, gt_questions), desc=f"cuda:{args.chunk_idx} ", total=len(gt_questions)):
input_ids, video_tensors = data
input_ids = input_ids.to(device='cuda', non_blocking=True)
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
features=video_tensors.to(dtype=torch.float16, device='cuda', non_blocking=True),
do_sample=True,
temperature=0.002,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
sample_set = {
'id': sample['id'],
'question': sample['question'],
'answer': sample['answer'],
'answer_type': sample['answer_type'] if 'answer_type' in sample else None,
'pred': outputs
}
ans_file.write(json.dumps(sample_set) + "\n")
ans_file.flush()
if __name__ == "__main__":
args = parse_args()
run_inference(args)