Spaces:
Runtime error
Runtime error
import torch | |
from ..constants import * | |
from ..conversation import conv_templates, SeparatorStyle | |
from ..model.builder import load_pretrained_model | |
from ..utils import disable_torch_init | |
from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_model_name_from_path | |
from PIL import Image | |
import os | |
from decord import VideoReader, cpu | |
import numpy as np | |
class Chat: | |
def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False): | |
disable_torch_init() | |
model_name = get_model_name_from_path(model_path) | |
self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit=load_8bit, load_4bit=load_4bit) | |
mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.model.resize_token_embeddings(len(self.tokenizer)) | |
vision_tower = self.model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
self.image_processor = vision_tower.image_processor | |
self.conv_mode = conv_mode | |
print(self.model) | |
def get_prompt(self, qs, state): | |
state.append_message(state.roles[0], qs) | |
state.append_message(state.roles[1], None) | |
return state | |
def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, | |
video_framerate=1, s=None, e=None): | |
if s is None: | |
start_time, end_time = None, None | |
else: | |
start_time = int(s) | |
end_time = int(e) | |
start_time = start_time if start_time >= 0. else 0. | |
end_time = end_time if end_time >= 0. else 0. | |
if start_time > end_time: | |
start_time, end_time = end_time, start_time | |
elif start_time == end_time: | |
end_time = start_time + 1 | |
if os.path.exists(video_path): | |
vreader = VideoReader(video_path, ctx=cpu(0)) | |
else: | |
print(video_path) | |
raise FileNotFoundError | |
fps = vreader.get_avg_fps() | |
f_start = 0 if start_time is None else int(start_time * fps) | |
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1)) | |
num_frames = f_end - f_start + 1 | |
if num_frames > 0: | |
sample_fps = int(video_framerate) | |
t_stride = int(round(float(fps) / sample_fps)) | |
all_pos = list(range(f_start, f_end + 1, t_stride)) | |
if len(all_pos) > max_frames: | |
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)] | |
else: | |
sample_pos = all_pos | |
patch_numpy = vreader.get_batch(sample_pos).asnumpy() | |
print("patch_numpy", patch_numpy.shape) | |
return patch_numpy | |
def generate(self, images_tensor, prompt, first_run, state): | |
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor | |
state = self.get_prompt(prompt, state) | |
prompt = state.get_prompt() | |
print(prompt) | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
temperature = 0.2 | |
max_new_tokens = 1024 | |
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \ | |
conv_templates[self.conv_mode].copy().sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=images_tensor, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
use_cache=True, | |
stopping_criteria=[stopping_criteria]) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
print('response', outputs) | |
return outputs, state | |
title_markdown = (""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1 >Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams</h1> | |
</div> | |
</div> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div style="display:flex; gap: 0.25rem;" align="center"> | |
<a href="https://invinciblewyq.github.io/vstream-page/"><img src='https://img.shields.io/badge/Project-Page-Green'></a> | |
<a href="https://arxiv.org/abs/2406.08085v1"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> | |
<a href='https://github.com/IVGSZ/Flash-VStream'><img src='https://img.shields.io/badge/Github-Code-blue'></a> | |
</div> | |
</div> | |
""") | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |