# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors. # ------------------------------------------------------------------------ # Based on https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from typing import List, Optional, Tuple, Union from transformers import AutoConfig, AutoModelForCausalLM, \ LlamaConfig, LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from flash_vstream.model.vstream_arch import VStreamMetaModel, VStreamMetaForCausalLM class VStreamConfig(LlamaConfig): model_type = "vstream" class VStreamLlamaModel(VStreamMetaModel, LlamaModel): config_class = VStreamConfig def __init__(self, config: LlamaConfig): super(VStreamLlamaModel, self).__init__(config) class VStreamLlamaForCausalLM(VStreamMetaForCausalLM, LlamaForCausalLM): config_class = VStreamConfig def __init__(self, config): super(VStreamLlamaForCausalLM, self).__init__(config) self.model = VStreamLlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = True, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, features: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: if self.use_video_streaming_mode: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal_streaming( input_ids, position_ids, attention_mask, past_key_values, labels, ) else: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images, features, ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) features = kwargs.pop("features", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images if features is not None: _inputs['features'] = features return _inputs AutoConfig.register("vstream", VStreamConfig) AutoModelForCausalLM.register(VStreamConfig, VStreamLlamaForCausalLM)