# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors. # ------------------------------------------------------------------------ # Based on https://github.com/haotian-liu/LLaVA. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import math import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.multiprocessing import Lock, Manager from abc import ABC, abstractmethod from flash_vstream.model.multimodal_encoder.builder import build_vision_tower from flash_vstream.model.multimodal_projector.builder import build_vision_projector from flash_vstream.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from flash_vstream.model.compress_functions import drop_feature, merge_feature, kmeans_feature, weighted_kmeans_feature, k_drop_feature, k_merge_feature, attention_feature class NeuralTuringMachine(nn.Module): def __init__(self, input_dim=1024, output_dim=1024, attention_dropout=0.1): super(NeuralTuringMachine, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.q_proj = nn.Linear(input_dim, output_dim) self.k_proj = nn.Linear(input_dim, output_dim) self.v_proj = nn.Linear(input_dim, output_dim) self.dropout = nn.Dropout(attention_dropout) self.out_proj = nn.Linear(output_dim, input_dim) self.out_dropout = nn.Dropout(attention_dropout) self.out_ln = nn.LayerNorm(input_dim, eps=1e-12) def get_weight(self, x, y): query = self.q_proj(x) key = self.k_proj(y) scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim) weight = F.softmax(scores, dim=-1) return weight def forward(self, x, y): query = self.q_proj(x) key = self.k_proj(y) scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim) weight = F.softmax(scores, dim=-1) attn = self.dropout(weight) value = self.v_proj(y) output = torch.matmul(attn, value) output = self.out_proj(output) output = self.out_dropout(output) output = self.out_ln(output.unsqueeze(0)).squeeze(0) return output class VStreamMetaModel: def __init__(self, config): super(VStreamMetaModel, self).__init__(config) self.mm_input_dim = config.mm_hidden_size if getattr(config, 'mm_use_4_vision_tokens', False): self.mm_input_dim = self.mm_input_dim * 4 if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config, self.mm_input_dim) compress_Turing_hidden_dim = getattr(self.config, "compress_Turing_hidden_dim", 32) self.attention_model = NeuralTuringMachine(self.mm_input_dim, compress_Turing_hidden_dim) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.config.compress_type = getattr(model_args, "compress_type", None) self.config.compress_size = getattr(model_args, "compress_size", 1) self.config.compress_long_memory_size = getattr(model_args, "compress_long_memory_size", 1) self.config.compress_Turing_memory_size = getattr(model_args, "compress_Turing_memory_size", 1) self.config.compress_Turing_update_ratio = getattr(model_args, "compress_Turing_update_ratio", 0.2) self.config.video_max_frames = getattr(model_args, "video_max_frames", 50) self.config.video_long_memory_length = getattr(model_args, "video_long_memory_length", 10) self.config.video_Turing_memory_length = getattr(model_args, "video_Turing_memory_length", 10) self.config.video_short_memory_length = getattr(model_args, "video_short_memory_length", 10) self.config.video_current_memory_length = getattr(model_args, "video_current_memory_length", 1) self.config.video_sample_type = getattr(model_args, "video_sample_type", "center") if getattr(self, 'mm_projector', None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) class VStreamMetaForCausalLM(ABC): def __init__(self, config): super(VStreamMetaForCausalLM, self).__init__(config) # support video streaming mode self.use_video_streaming_mode = False self.video_embedding_memory = None # set to torch.multiprocessing.Manager.list() when launching self.video_embedding_mem_lock = Lock() @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) return image_features def reshape_2x2_image_features(self, image_features): B, P, D = image_features.shape patch_size = round(math.sqrt(P)) assert patch_size % 2 == 0, "Patch size must be divisible by 2." image_features = image_features.reshape(B, patch_size, patch_size, D) image_features_2x2 = image_features.reshape(B, patch_size // 2, 2, patch_size // 2, 2, D) image_features_2x2 = image_features_2x2.permute(0, 1, 3, 2, 4, 5) image_features_2x2 = image_features_2x2.reshape(B, patch_size // 2, patch_size // 2, 4 * D) # concat 2x2 neighbor patches image_features = image_features_2x2.reshape(B, (patch_size // 2) ** 2, 4 * D) return image_features def attention(self, turing_memory, new_feature, update_ratio=0.2): T1, D1 = turing_memory.shape T2, D2 = new_feature.shape assert D1 == D2, f"dimmension not match, {D1} != {D2}" model = self.get_model().attention_model weight = model.get_weight(turing_memory, new_feature) weight = weight * update_ratio # [T1, T2] decay = weight.sum(dim=1, keepdim=True) # [T0*P, 1], 表示当前NTM memory和新来的feat的相似度 turing_memory = turing_memory * (1 - decay) + torch.mm(weight, new_feature) return turing_memory def attention2(self, turing_memory, new_feature, update_ratio=0.2): # deprecated T1, D1 = turing_memory.shape T2, D2 = new_feature.shape assert D1 == D2, f"dimmension not match, {D1} != {D2}" model = self.get_model().attention_model turing_memory = model.forward(turing_memory, new_feature) return turing_memory def compress_spatial_features(self, image_features, compress_size=1): compress_type = getattr(self.config, "compress_type", None) patch_size = round(math.sqrt(image_features.shape[1])) assert patch_size * patch_size == image_features.shape[1], f"For ViT feature map, {patch_size}*{patch_size}={patch_size**2} != {image_features.shape[1]}" if patch_size == compress_size: return image_features elif compress_type is not None: if 'mean' in self.config.compress_type: # TODO: currently use 1 token per frame (or image), direct poolt if compress_size == 1: image_features = image_features.mean(dim=1, keepdim=True) else: image_features = image_features.view(-1, patch_size, patch_size, image_features.shape[-1]) image_features = image_features.permute(0, 3, 1, 2) # [B*T, D, P, P] pooled_features = F.avg_pool2d(image_features, (patch_size // compress_size, patch_size // compress_size)) pooled_features = pooled_features.permute(0, 2, 3, 1) # [B*T, P, P, D] image_features = pooled_features.view(-1, compress_size * compress_size, pooled_features.shape[-1]) else: raise NotImplementedError(f"`compress_type` {self.config.compress_type} is not supported yet.") return image_features def compress_temporal_features(self, image_features): video_long_memory_length = getattr(self.config, "video_long_memory_length", 10) video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10) video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used video_current_memory_length = getattr(self.config, "video_current_memory_length", 1) compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1) compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1) compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2) compress_fn_dic = { 'drop': drop_feature, 'merge': merge_feature, 'kmeans': kmeans_feature, 'weighted_kmeans': weighted_kmeans_feature, 'kdrop': k_drop_feature, 'kmerge': k_merge_feature, 'attention': attention_feature, } compress_type = self.config.video_sample_type if compress_type in compress_fn_dic: compress_fn = compress_fn_dic[compress_type] else: raise NotImplementedError(f'max_length = {self.config.video_max_frames},' f'while video_sample_type = {compress_type} is not supported yet.') new_image_features = [] step_indices = [] step_features = [] for img_feature in image_features: # [T, P*P, D] cur_start = min(video_current_memory_length, img_feature.shape[0]) ### Calc Spatial Memory if cur_start == 0: cur_memory = img_feature[:0] long_memory = img_feature Turing_memory = img_feature else: cur_memory = img_feature[-cur_start:] # [C, P*P, D] long_memory = img_feature[:-cur_start] # [L, P*P, D] Turing_memory = img_feature[:-cur_start] # [L, P*P, D] if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]: long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L, P'*P', D] if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]: Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L, P'*P', D] ### Calc Temporal Memory if video_long_memory_length == 0 or long_memory.shape[0] == 0: long_memory_compreesed = long_memory[:0] else: long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) # [L_long, P'*P', D], [L_long] ### Calc Retrieved Memory sorted_indices = torch.argsort(weight, descending=True) # [L_long] key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D] key_length = 3 if key_centroids.shape[0] > key_length: key_centroids = key_centroids[:key_length] dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L] min_indices = torch.argmin(dists, dim=0) # [k_L] key_memory = img_feature[min_indices] cur_memory = torch.cat([key_memory, cur_memory], dim=0) ### Calc Abstract Memory if video_Turing_memory_length == 0 or Turing_memory.shape[0] == 0: Turing_memory_compreesed = Turing_memory[:0] else: Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio) memory_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0) new_image_features.append(memory_feature) return new_image_features def cat_proj(self, all_features): # concatenate features and project them together feature_split_size = [x.shape[0] for x in all_features] feature_embed = torch.cat(all_features, dim=0) feature_proj = self.get_model().mm_projector(feature_embed) feature_proj = torch.split(feature_proj, feature_split_size, dim=0) return feature_proj def prepare_inputs_labels_for_multimodal( self, input_ids, position_ids, attention_mask, past_key_values, labels, images, features ): vision_tower = self.get_vision_tower() if vision_tower is None or (images is None and features is None) or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and ((images is not None) or (features is not None)) and input_ids.shape[1] == 1: target_shape = past_key_values[-1][-1].shape[-2] + 1 if target_shape - attention_mask.shape[1] >= 0: attention_mask = torch.cat((attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device )), dim=1) elif target_shape - attention_mask.shape[1] < 0: attention_mask = attention_mask[:, :target_shape] position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids, position_ids, attention_mask, past_key_values, None, labels if (features is not None) or (type(images) is list) or (images.ndim == 5): compress_size = getattr(self.config, "compress_size", 1) if images is not None: images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W] concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W] image_features = self.encode_images(concat_images) # [B*T, P, D] if getattr(self.config, 'mm_use_4_vision_tokens', False): image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D] image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D] split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D] else: image_features = [feat if len(feat.shape) == 3 else feat.unsqueeze(0) for feat in features] origin_img_features = image_features if getattr(self.config, 'mm_use_4_vision_tokens', False): image_features = [self.reshape_2x2_image_features(img_feature) for img_feature in image_features] # [B*T, P/4, 4*D] image_features = [self.compress_spatial_features(image_feature, compress_size) for image_feature in image_features] # [B*T, P', D] # perform memory consolidation image_features = self.compress_temporal_features(image_features) # [B, TP, D] image_features = [x.to(self.device) for x in image_features] # [B, TP, D] image_features = self.cat_proj(image_features) else: image_features = self.encode_images(images).to(self.device) # [B, 576, 2048] if getattr(self.config, 'mm_use_4_vision_tokens', False): image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D] image_features = self.get_model().mm_projector(image_features) # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): raise NotImplementedError _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- TODO: double check input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] new_input_embeds = [] new_labels = [] cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if num_images == 0: cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) if i < num_images: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) assert cur_image_idx == batch_idx + 1 # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) if tokenizer_model_max_length is not None: new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] new_labels = [x[:tokenizer_model_max_length] for x in new_labels] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): cur_len = cur_new_embed.shape[0] if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": new_input_embeds_padded.append(torch.cat(( torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed ), dim=0)) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) else: new_input_embeds_padded.append(torch.cat(( cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) ), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels def prepare_inputs_labels_for_multimodal_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1 self, input_ids, position_ids, attention_mask, past_key_values, labels ): assert self.use_video_streaming_mode logger = logging.getLogger(__name__) vision_tower = self.get_vision_tower() if vision_tower is None or input_ids.shape[1] == 1: if past_key_values is not None and vision_tower is not None and input_ids.shape[1] == 1: target_shape = past_key_values[-1][-1].shape[-2] + 1 if target_shape - attention_mask.shape[1] >= 0: attention_mask = torch.cat((attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device )), dim=1) elif target_shape - attention_mask.shape[1] < 0: attention_mask = attention_mask[:, :target_shape] position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids, position_ids, attention_mask, past_key_values, None, labels # Have some tries to avoid deadlock attempt_times = 0 while attempt_times < 300: try: with self.video_embedding_mem_lock: cur_memory, long_memory_compreesed, Turing_memory_compreesed, _ = self.video_embedding_memory logger.info(f'Read cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}') image_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0) image_features = [image_feature.to(self.device)] break except Exception as e: logger.error(f'Attempt:{attempt_times} Failed to get video features, Error: {e}') image_features = [] time.sleep(0.1) attempt_times += 1 image_features = [x.to(self.device) for x in image_features] # [B, TP, D] image_features = self.cat_proj(image_features) # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): raise NotImplementedError _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- TODO: double check input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] new_input_embeds = [] new_labels = [] cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if num_images == 0: cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) if i < num_images: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) assert cur_image_idx == batch_idx + 1 # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) if tokenizer_model_max_length is not None: new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] new_labels = [x[:tokenizer_model_max_length] for x in new_labels] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): cur_len = cur_new_embed.shape[0] if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": new_input_embeds_padded.append(torch.cat(( torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed ), dim=0)) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) else: new_input_embeds_padded.append(torch.cat(( cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) ), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels def embed_video_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1 self, images ): assert self.use_video_streaming_mode logger = logging.getLogger(__name__) compress_size = getattr(self.config, "compress_size", 1) video_long_memory_length = getattr(self.config, "video_long_memory_length", 10) video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10) video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used video_current_memory_length = getattr(self.config, "video_current_memory_length", 1) compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1) compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1) compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2) compress_fn_dic = { 'drop': drop_feature, 'merge': merge_feature, 'kmeans': kmeans_feature, 'weighted_kmeans': weighted_kmeans_feature, 'kdrop': k_drop_feature, 'kmerge': k_merge_feature, 'uni_kmerge': k_merge_feature, 'both_kmerge': k_merge_feature, 'split_kmerge': k_merge_feature, 'attention': attention_feature, } if type(images) is list or images.ndim == 5: assert len(images) == 1 images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W] concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W] image_features = self.encode_images(concat_images) # [B*T, P, D] image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D] split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D] else: raise NotImplementedError('Should input video frames, not a single image') image_feature = image_features[0].detach().to(torch.float16).to(self.device) # [T, P, D] img_feature_buffer = image_feature.cpu() cur_start = min(video_current_memory_length, image_feature.shape[0]) if cur_start == 0: cur_memory = image_feature[:0] else: cur_memory = image_feature[-cur_start:] # [L_c, P*P, D] long_memory = image_feature Turing_memory = image_feature if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]: long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L_l, P'*P', D] if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]: Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L_t, P'*P', D] compress_type = self.config.video_sample_type if compress_type in compress_fn_dic: compress_fn = compress_fn_dic[compress_type] else: raise NotImplementedError(f'max_length = {self.config.video_max_frames},' f'while video_sample_type = {compress_type} is not supported yet.') long_memory_compreesed = long_memory Turing_memory_compreesed = Turing_memory # Read old memory from shared memory, do not need an I/O lock if self.video_embedding_memory is not None and len(self.video_embedding_memory) > 0: old_cur_memory, old_long_memory_compreesed, old_Turing_memory_compreesed, old_img_feature_buffer = self.video_embedding_memory old_long_memory_compreesed = old_long_memory_compreesed.to(self.device) old_Turing_memory_compreesed = old_Turing_memory_compreesed.to(self.device) img_feature_buffer = torch.cat([old_img_feature_buffer, image_feature.cpu()], dim=0) assert isinstance(old_long_memory_compreesed, torch.Tensor) and old_long_memory_compreesed.shape[1:] == long_memory_compreesed.shape[1:] long_memory = torch.cat((old_long_memory_compreesed, long_memory_compreesed), dim=0) long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) # Retrive key frames sorted_indices = torch.argsort(weight, descending=True) # [L_long] key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D] key_length = 3 if key_centroids.shape[0] > key_length: key_centroids = key_centroids[:key_length] dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L] min_indices = torch.argmin(dists, dim=0) # [k_L] key_memory = img_feature_buffer[min_indices.cpu()].to(self.device) cur_memory = torch.cat([key_memory, cur_memory], dim=0) Turing_memory = torch.cat((old_Turing_memory_compreesed, Turing_memory_compreesed), dim=0) Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio) # Write to shared memory, need an I/O lock with self.video_embedding_mem_lock: self.video_embedding_memory[:] = [cur_memory.cpu(), long_memory_compreesed.cpu(), Turing_memory_compreesed.cpu(), img_feature_buffer] # Only change content logger.info(f'Write cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}') return [] def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False