Spaces:
Running
on
Zero
Running
on
Zero
YuxueYang
commited on
Commit
·
2a59fa8
1
Parent(s):
f68f71d
Upload demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +1 -1
- __assets__/demos/demo_1/first_frame.jpg +0 -0
- __assets__/demos/demo_1/layer_0.jpg +0 -0
- __assets__/demos/demo_1/layer_1.jpg +0 -0
- __assets__/demos/demo_1/layer_2.jpg +0 -0
- __assets__/demos/demo_1/sketch.mp4 +0 -0
- __assets__/demos/demo_1/trajectory.json +200 -0
- __assets__/demos/demo_1/trajectory.npz +3 -0
- __assets__/demos/demo_2/first_frame.jpg +0 -0
- __assets__/demos/demo_2/layer_0.jpg +0 -0
- __assets__/demos/demo_2/layer_1.jpg +0 -0
- __assets__/demos/demo_2/layer_2.jpg +0 -0
- __assets__/demos/demo_2/sketch.mp4 +0 -0
- __assets__/demos/demo_2/trajectory.json +200 -0
- __assets__/demos/demo_2/trajectory.npz +3 -0
- __assets__/demos/demo_3/first_frame.jpg +0 -0
- __assets__/demos/demo_3/last_frame.jpg +0 -0
- __assets__/demos/demo_3/layer_0.jpg +0 -0
- __assets__/demos/demo_3/layer_0_last.jpg +0 -0
- __assets__/demos/demo_3/layer_1.jpg +0 -0
- __assets__/demos/demo_3/layer_1_last.jpg +0 -0
- __assets__/demos/demo_3/layer_2.jpg +0 -0
- __assets__/demos/demo_3/layer_2_last.jpg +0 -0
- __assets__/demos/demo_3/layer_3.jpg +0 -0
- __assets__/demos/demo_3/layer_3_last.jpg +0 -0
- __assets__/demos/demo_3/sketch.mp4 +0 -0
- __assets__/demos/demo_3/trajectory.json +134 -0
- __assets__/demos/demo_3/trajectory.npz +3 -0
- __assets__/demos/demo_4/first_frame.jpg +0 -0
- __assets__/demos/demo_4/layer_0.jpg +0 -0
- __assets__/demos/demo_4/layer_1.jpg +0 -0
- __assets__/demos/demo_4/layer_2.jpg +0 -0
- __assets__/demos/demo_4/sketch.mp4 +0 -0
- __assets__/demos/demo_4/trajectory.json +200 -0
- __assets__/demos/demo_4/trajectory.npz +3 -0
- __assets__/demos/demo_5/first_frame.jpg +0 -0
- __assets__/demos/demo_5/layer_0.jpg +0 -0
- __assets__/demos/demo_5/layer_1.jpg +0 -0
- __assets__/demos/demo_5/sketch.mp4 +0 -0
- __assets__/demos/demo_5/trajectory.json +332 -0
- __assets__/demos/demo_5/trajectory.npz +3 -0
- __assets__/figs/demos.gif +3 -0
- app.py +651 -0
- lvdm/basics.py +100 -0
- lvdm/common.py +94 -0
- lvdm/models/autoencoder.py +143 -0
- lvdm/models/condition.py +477 -0
- lvdm/models/controlnet.py +500 -0
- lvdm/models/layer_controlnet.py +444 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -8,7 +8,7 @@ sdk_version: 5.23.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: "LayerAnimate: Layer-level Control for Animation"
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__assets__/demos/demo_1/first_frame.jpg
ADDED
![]() |
__assets__/demos/demo_1/layer_0.jpg
ADDED
![]() |
__assets__/demos/demo_1/layer_1.jpg
ADDED
![]() |
__assets__/demos/demo_1/layer_2.jpg
ADDED
![]() |
__assets__/demos/demo_1/sketch.mp4
ADDED
Binary file (65.5 kB). View file
|
|
__assets__/demos/demo_1/trajectory.json
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
111.87965393066406,
|
5 |
+
204.28741455078125
|
6 |
+
],
|
7 |
+
[
|
8 |
+
83.42483520507812,
|
9 |
+
204.21835327148438
|
10 |
+
],
|
11 |
+
[
|
12 |
+
52.417137145996094,
|
13 |
+
205.34869384765625
|
14 |
+
],
|
15 |
+
[
|
16 |
+
-10.01504135131836,
|
17 |
+
205.83694458007812
|
18 |
+
],
|
19 |
+
[
|
20 |
+
-33.109561920166016,
|
21 |
+
206.53018188476562
|
22 |
+
],
|
23 |
+
[
|
24 |
+
-86.02885437011719,
|
25 |
+
205.10772705078125
|
26 |
+
],
|
27 |
+
[
|
28 |
+
-119.59435272216797,
|
29 |
+
204.4576873779297
|
30 |
+
],
|
31 |
+
[
|
32 |
+
-168.70248413085938,
|
33 |
+
210.6188201904297
|
34 |
+
],
|
35 |
+
[
|
36 |
+
-185.9542999267578,
|
37 |
+
211.16294860839844
|
38 |
+
],
|
39 |
+
[
|
40 |
+
-206.82852172851562,
|
41 |
+
207.50912475585938
|
42 |
+
],
|
43 |
+
[
|
44 |
+
-232.2637939453125,
|
45 |
+
208.35643005371094
|
46 |
+
],
|
47 |
+
[
|
48 |
+
-177.6964111328125,
|
49 |
+
205.50949096679688
|
50 |
+
],
|
51 |
+
[
|
52 |
+
-231.19761657714844,
|
53 |
+
203.8624267578125
|
54 |
+
],
|
55 |
+
[
|
56 |
+
-276.06622314453125,
|
57 |
+
208.6024169921875
|
58 |
+
],
|
59 |
+
[
|
60 |
+
-285.68218994140625,
|
61 |
+
210.30313110351562
|
62 |
+
],
|
63 |
+
[
|
64 |
+
-235.0211639404297,
|
65 |
+
207.910400390625
|
66 |
+
]
|
67 |
+
],
|
68 |
+
[
|
69 |
+
[
|
70 |
+
130.59063720703125,
|
71 |
+
131.48106384277344
|
72 |
+
],
|
73 |
+
[
|
74 |
+
101.31892395019531,
|
75 |
+
131.62567138671875
|
76 |
+
],
|
77 |
+
[
|
78 |
+
69.3387451171875,
|
79 |
+
132.40696716308594
|
80 |
+
],
|
81 |
+
[
|
82 |
+
6.821704864501953,
|
83 |
+
133.10546875
|
84 |
+
],
|
85 |
+
[
|
86 |
+
-21.6120548248291,
|
87 |
+
132.92977905273438
|
88 |
+
],
|
89 |
+
[
|
90 |
+
-83.36480712890625,
|
91 |
+
132.2947998046875
|
92 |
+
],
|
93 |
+
[
|
94 |
+
-111.29481506347656,
|
95 |
+
131.91827392578125
|
96 |
+
],
|
97 |
+
[
|
98 |
+
-168.74850463867188,
|
99 |
+
138.11587524414062
|
100 |
+
],
|
101 |
+
[
|
102 |
+
-198.75299072265625,
|
103 |
+
139.32774353027344
|
104 |
+
],
|
105 |
+
[
|
106 |
+
-253.08055114746094,
|
107 |
+
136.65480041503906
|
108 |
+
],
|
109 |
+
[
|
110 |
+
-278.3507080078125,
|
111 |
+
136.42958068847656
|
112 |
+
],
|
113 |
+
[
|
114 |
+
-312.9150390625,
|
115 |
+
134.22898864746094
|
116 |
+
],
|
117 |
+
[
|
118 |
+
-332.20989990234375,
|
119 |
+
133.93161010742188
|
120 |
+
],
|
121 |
+
[
|
122 |
+
-357.1211853027344,
|
123 |
+
139.33224487304688
|
124 |
+
],
|
125 |
+
[
|
126 |
+
-361.4031677246094,
|
127 |
+
139.66172790527344
|
128 |
+
],
|
129 |
+
[
|
130 |
+
-338.45501708984375,
|
131 |
+
141.38809204101562
|
132 |
+
]
|
133 |
+
],
|
134 |
+
[
|
135 |
+
[
|
136 |
+
308.344970703125,
|
137 |
+
6.6701483726501465
|
138 |
+
],
|
139 |
+
[
|
140 |
+
278.66864013671875,
|
141 |
+
7.116205215454102
|
142 |
+
],
|
143 |
+
[
|
144 |
+
247.65390014648438,
|
145 |
+
7.756659507751465
|
146 |
+
],
|
147 |
+
[
|
148 |
+
184.76953125,
|
149 |
+
8.749884605407715
|
150 |
+
],
|
151 |
+
[
|
152 |
+
154.9658203125,
|
153 |
+
8.66163444519043
|
154 |
+
],
|
155 |
+
[
|
156 |
+
92.775146484375,
|
157 |
+
7.572597503662109
|
158 |
+
],
|
159 |
+
[
|
160 |
+
63.20433044433594,
|
161 |
+
7.524573802947998
|
162 |
+
],
|
163 |
+
[
|
164 |
+
1.4797935485839844,
|
165 |
+
13.07353401184082
|
166 |
+
],
|
167 |
+
[
|
168 |
+
-26.288057327270508,
|
169 |
+
13.74260139465332
|
170 |
+
],
|
171 |
+
[
|
172 |
+
-83.00379943847656,
|
173 |
+
11.522849082946777
|
174 |
+
],
|
175 |
+
[
|
176 |
+
-109.52509307861328,
|
177 |
+
10.739717483520508
|
178 |
+
],
|
179 |
+
[
|
180 |
+
-140.5462646484375,
|
181 |
+
8.596296310424805
|
182 |
+
],
|
183 |
+
[
|
184 |
+
-155.35394287109375,
|
185 |
+
8.009984970092773
|
186 |
+
],
|
187 |
+
[
|
188 |
+
-180.55775451660156,
|
189 |
+
13.584362030029297
|
190 |
+
],
|
191 |
+
[
|
192 |
+
-185.0371856689453,
|
193 |
+
14.09956169128418
|
194 |
+
],
|
195 |
+
[
|
196 |
+
-203.57778930664062,
|
197 |
+
18.082473754882812
|
198 |
+
]
|
199 |
+
]
|
200 |
+
]
|
__assets__/demos/demo_1/trajectory.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:232a68740a9d2828277e786d760cb2d7436f4617ae1d64d31a61888be0c65ea1
|
3 |
+
size 994
|
__assets__/demos/demo_2/first_frame.jpg
ADDED
![]() |
__assets__/demos/demo_2/layer_0.jpg
ADDED
![]() |
__assets__/demos/demo_2/layer_1.jpg
ADDED
![]() |
__assets__/demos/demo_2/layer_2.jpg
ADDED
![]() |
__assets__/demos/demo_2/sketch.mp4
ADDED
Binary file (13 kB). View file
|
|
__assets__/demos/demo_2/trajectory.json
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
158.21946716308594,
|
5 |
+
245.89105224609375
|
6 |
+
],
|
7 |
+
[
|
8 |
+
148.94857788085938,
|
9 |
+
246.4789276123047
|
10 |
+
],
|
11 |
+
[
|
12 |
+
137.88522338867188,
|
13 |
+
247.1299285888672
|
14 |
+
],
|
15 |
+
[
|
16 |
+
128.4403839111328,
|
17 |
+
247.8033905029297
|
18 |
+
],
|
19 |
+
[
|
20 |
+
127.84039306640625,
|
21 |
+
246.24864196777344
|
22 |
+
],
|
23 |
+
[
|
24 |
+
127.06155395507812,
|
25 |
+
244.60606384277344
|
26 |
+
],
|
27 |
+
[
|
28 |
+
126.77435302734375,
|
29 |
+
243.17208862304688
|
30 |
+
],
|
31 |
+
[
|
32 |
+
126.42509460449219,
|
33 |
+
243.04747009277344
|
34 |
+
],
|
35 |
+
[
|
36 |
+
125.61285400390625,
|
37 |
+
242.14913940429688
|
38 |
+
],
|
39 |
+
[
|
40 |
+
125.40904235839844,
|
41 |
+
242.65948486328125
|
42 |
+
],
|
43 |
+
[
|
44 |
+
125.03759765625,
|
45 |
+
242.90908813476562
|
46 |
+
],
|
47 |
+
[
|
48 |
+
124.67877197265625,
|
49 |
+
242.95994567871094
|
50 |
+
],
|
51 |
+
[
|
52 |
+
125.00759887695312,
|
53 |
+
242.61265563964844
|
54 |
+
],
|
55 |
+
[
|
56 |
+
125.37916564941406,
|
57 |
+
242.13555908203125
|
58 |
+
],
|
59 |
+
[
|
60 |
+
125.7420654296875,
|
61 |
+
242.410888671875
|
62 |
+
],
|
63 |
+
[
|
64 |
+
125.54336547851562,
|
65 |
+
242.98825073242188
|
66 |
+
]
|
67 |
+
],
|
68 |
+
[
|
69 |
+
[
|
70 |
+
223.55435180664062,
|
71 |
+
204.28741455078125
|
72 |
+
],
|
73 |
+
[
|
74 |
+
207.83377075195312,
|
75 |
+
202.7445068359375
|
76 |
+
],
|
77 |
+
[
|
78 |
+
193.4696044921875,
|
79 |
+
200.418701171875
|
80 |
+
],
|
81 |
+
[
|
82 |
+
178.7669677734375,
|
83 |
+
199.83621215820312
|
84 |
+
],
|
85 |
+
[
|
86 |
+
178.14218139648438,
|
87 |
+
200.34848022460938
|
88 |
+
],
|
89 |
+
[
|
90 |
+
176.58251953125,
|
91 |
+
200.19627380371094
|
92 |
+
],
|
93 |
+
[
|
94 |
+
175.0523681640625,
|
95 |
+
200.24407958984375
|
96 |
+
],
|
97 |
+
[
|
98 |
+
174.57379150390625,
|
99 |
+
199.90940856933594
|
100 |
+
],
|
101 |
+
[
|
102 |
+
173.37542724609375,
|
103 |
+
200.4640350341797
|
104 |
+
],
|
105 |
+
[
|
106 |
+
173.5262451171875,
|
107 |
+
200.5198974609375
|
108 |
+
],
|
109 |
+
[
|
110 |
+
173.60935974121094,
|
111 |
+
200.36471557617188
|
112 |
+
],
|
113 |
+
[
|
114 |
+
173.8643035888672,
|
115 |
+
200.39389038085938
|
116 |
+
],
|
117 |
+
[
|
118 |
+
173.903076171875,
|
119 |
+
200.2958984375
|
120 |
+
],
|
121 |
+
[
|
122 |
+
173.96859741210938,
|
123 |
+
200.00491333007812
|
124 |
+
],
|
125 |
+
[
|
126 |
+
174.22422790527344,
|
127 |
+
200.09921264648438
|
128 |
+
],
|
129 |
+
[
|
130 |
+
174.16683959960938,
|
131 |
+
200.00193786621094
|
132 |
+
]
|
133 |
+
],
|
134 |
+
[
|
135 |
+
[
|
136 |
+
232.88790893554688,
|
137 |
+
261.492431640625
|
138 |
+
],
|
139 |
+
[
|
140 |
+
224.37376403808594,
|
141 |
+
258.9049072265625
|
142 |
+
],
|
143 |
+
[
|
144 |
+
214.7504119873047,
|
145 |
+
255.82171630859375
|
146 |
+
],
|
147 |
+
[
|
148 |
+
205.59695434570312,
|
149 |
+
252.74368286132812
|
150 |
+
],
|
151 |
+
[
|
152 |
+
203.56024169921875,
|
153 |
+
254.83567810058594
|
154 |
+
],
|
155 |
+
[
|
156 |
+
200.3128662109375,
|
157 |
+
256.933349609375
|
158 |
+
],
|
159 |
+
[
|
160 |
+
197.56045532226562,
|
161 |
+
258.17236328125
|
162 |
+
],
|
163 |
+
[
|
164 |
+
196.72007751464844,
|
165 |
+
258.3282470703125
|
166 |
+
],
|
167 |
+
[
|
168 |
+
194.2041473388672,
|
169 |
+
259.42486572265625
|
170 |
+
],
|
171 |
+
[
|
172 |
+
194.23858642578125,
|
173 |
+
259.9649353027344
|
174 |
+
],
|
175 |
+
[
|
176 |
+
194.01547241210938,
|
177 |
+
260.14569091796875
|
178 |
+
],
|
179 |
+
[
|
180 |
+
193.87156677246094,
|
181 |
+
259.9699401855469
|
182 |
+
],
|
183 |
+
[
|
184 |
+
193.9617919921875,
|
185 |
+
259.7339172363281
|
186 |
+
],
|
187 |
+
[
|
188 |
+
193.89659118652344,
|
189 |
+
259.5014343261719
|
190 |
+
],
|
191 |
+
[
|
192 |
+
193.8680419921875,
|
193 |
+
259.7557373046875
|
194 |
+
],
|
195 |
+
[
|
196 |
+
193.91842651367188,
|
197 |
+
260.28717041015625
|
198 |
+
]
|
199 |
+
]
|
200 |
+
]
|
__assets__/demos/demo_2/trajectory.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba8194e3bd1376e10cb6c708d59603c406269b95bb1e266b20c7cfa66e248875
|
3 |
+
size 972
|
__assets__/demos/demo_3/first_frame.jpg
ADDED
![]() |
__assets__/demos/demo_3/last_frame.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_0.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_0_last.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_1.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_1_last.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_2.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_2_last.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_3.jpg
ADDED
![]() |
__assets__/demos/demo_3/layer_3_last.jpg
ADDED
![]() |
__assets__/demos/demo_3/sketch.mp4
ADDED
Binary file (54.1 kB). View file
|
|
__assets__/demos/demo_3/trajectory.json
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
49.66927719116211,
|
5 |
+
126.28060150146484
|
6 |
+
],
|
7 |
+
[
|
8 |
+
53.070796966552734,
|
9 |
+
140.00479125976562
|
10 |
+
],
|
11 |
+
[
|
12 |
+
58.86982345581055,
|
13 |
+
157.8321533203125
|
14 |
+
],
|
15 |
+
[
|
16 |
+
69.01676177978516,
|
17 |
+
175.84800720214844
|
18 |
+
],
|
19 |
+
[
|
20 |
+
76.01651000976562,
|
21 |
+
197.62847900390625
|
22 |
+
],
|
23 |
+
[
|
24 |
+
93.34223937988281,
|
25 |
+
232.17538452148438
|
26 |
+
],
|
27 |
+
[
|
28 |
+
96.88280487060547,
|
29 |
+
246.68162536621094
|
30 |
+
],
|
31 |
+
[
|
32 |
+
105.09373474121094,
|
33 |
+
265.91741943359375
|
34 |
+
],
|
35 |
+
[
|
36 |
+
122.41947174072266,
|
37 |
+
300.46429443359375
|
38 |
+
],
|
39 |
+
[
|
40 |
+
139.74520874023438,
|
41 |
+
335.0111999511719
|
42 |
+
],
|
43 |
+
[
|
44 |
+
157.07093811035156,
|
45 |
+
369.55810546875
|
46 |
+
],
|
47 |
+
[
|
48 |
+
174.39666748046875,
|
49 |
+
404.10498046875
|
50 |
+
],
|
51 |
+
[
|
52 |
+
191.722412109375,
|
53 |
+
438.65185546875
|
54 |
+
],
|
55 |
+
[
|
56 |
+
209.0481414794922,
|
57 |
+
473.19873046875
|
58 |
+
],
|
59 |
+
[
|
60 |
+
226.37387084960938,
|
61 |
+
507.74560546875
|
62 |
+
],
|
63 |
+
[
|
64 |
+
243.6995849609375,
|
65 |
+
542.29248046875
|
66 |
+
]
|
67 |
+
],
|
68 |
+
[
|
69 |
+
[
|
70 |
+
56.677669525146484,
|
71 |
+
69.07560729980469
|
72 |
+
],
|
73 |
+
[
|
74 |
+
66.92218780517578,
|
75 |
+
90.37911224365234
|
76 |
+
],
|
77 |
+
[
|
78 |
+
79.62323760986328,
|
79 |
+
116.14250183105469
|
80 |
+
],
|
81 |
+
[
|
82 |
+
91.2628173828125,
|
83 |
+
141.8087921142578
|
84 |
+
],
|
85 |
+
[
|
86 |
+
103.7956771850586,
|
87 |
+
167.58724975585938
|
88 |
+
],
|
89 |
+
[
|
90 |
+
117.59683227539062,
|
91 |
+
195.22598266601562
|
92 |
+
],
|
93 |
+
[
|
94 |
+
127.79037475585938,
|
95 |
+
221.12567138671875
|
96 |
+
],
|
97 |
+
[
|
98 |
+
140.4638671875,
|
99 |
+
248.97164916992188
|
100 |
+
],
|
101 |
+
[
|
102 |
+
138.9651641845703,
|
103 |
+
256.9488830566406
|
104 |
+
],
|
105 |
+
[
|
106 |
+
165.24566650390625,
|
107 |
+
296.32525634765625
|
108 |
+
],
|
109 |
+
[
|
110 |
+
191.52615356445312,
|
111 |
+
335.70166015625
|
112 |
+
],
|
113 |
+
[
|
114 |
+
217.806640625,
|
115 |
+
375.07806396484375
|
116 |
+
],
|
117 |
+
[
|
118 |
+
244.08714294433594,
|
119 |
+
414.4544372558594
|
120 |
+
],
|
121 |
+
[
|
122 |
+
270.3676452636719,
|
123 |
+
453.830810546875
|
124 |
+
],
|
125 |
+
[
|
126 |
+
296.64813232421875,
|
127 |
+
493.20721435546875
|
128 |
+
],
|
129 |
+
[
|
130 |
+
322.92864990234375,
|
131 |
+
532.5836181640625
|
132 |
+
]
|
133 |
+
]
|
134 |
+
]
|
__assets__/demos/demo_3/trajectory.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1080b8523b361f2e4fb3f5591c88f50e44d176a404e5f62b04cfc2bfe8c2f5d
|
3 |
+
size 857
|
__assets__/demos/demo_4/first_frame.jpg
ADDED
![]() |
__assets__/demos/demo_4/layer_0.jpg
ADDED
![]() |
__assets__/demos/demo_4/layer_1.jpg
ADDED
![]() |
__assets__/demos/demo_4/layer_2.jpg
ADDED
![]() |
__assets__/demos/demo_4/sketch.mp4
ADDED
Binary file (65.7 kB). View file
|
|
__assets__/demos/demo_4/trajectory.json
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
186.72357177734375,
|
5 |
+
225.0892333984375
|
6 |
+
],
|
7 |
+
[
|
8 |
+
186.59104919433594,
|
9 |
+
220.61599731445312
|
10 |
+
],
|
11 |
+
[
|
12 |
+
190.39842224121094,
|
13 |
+
216.0291748046875
|
14 |
+
],
|
15 |
+
[
|
16 |
+
199.52769470214844,
|
17 |
+
213.26031494140625
|
18 |
+
],
|
19 |
+
[
|
20 |
+
204.145263671875,
|
21 |
+
214.56866455078125
|
22 |
+
],
|
23 |
+
[
|
24 |
+
209.41751098632812,
|
25 |
+
214.23330688476562
|
26 |
+
],
|
27 |
+
[
|
28 |
+
211.30255126953125,
|
29 |
+
216.12774658203125
|
30 |
+
],
|
31 |
+
[
|
32 |
+
215.53131103515625,
|
33 |
+
215.55880737304688
|
34 |
+
],
|
35 |
+
[
|
36 |
+
211.28453063964844,
|
37 |
+
215.3497314453125
|
38 |
+
],
|
39 |
+
[
|
40 |
+
205.66819763183594,
|
41 |
+
210.34344482421875
|
42 |
+
],
|
43 |
+
[
|
44 |
+
208.09231567382812,
|
45 |
+
197.720458984375
|
46 |
+
],
|
47 |
+
[
|
48 |
+
201.51205444335938,
|
49 |
+
215.72598266601562
|
50 |
+
],
|
51 |
+
[
|
52 |
+
191.19480895996094,
|
53 |
+
223.12850952148438
|
54 |
+
],
|
55 |
+
[
|
56 |
+
194.90512084960938,
|
57 |
+
222.38108825683594
|
58 |
+
],
|
59 |
+
[
|
60 |
+
200.74607849121094,
|
61 |
+
217.3187713623047
|
62 |
+
],
|
63 |
+
[
|
64 |
+
207.563720703125,
|
65 |
+
235.63250732421875
|
66 |
+
]
|
67 |
+
],
|
68 |
+
[
|
69 |
+
[
|
70 |
+
289.63397216796875,
|
71 |
+
230.28970336914062
|
72 |
+
],
|
73 |
+
[
|
74 |
+
289.8543701171875,
|
75 |
+
227.20205688476562
|
76 |
+
],
|
77 |
+
[
|
78 |
+
292.2384033203125,
|
79 |
+
223.03854370117188
|
80 |
+
],
|
81 |
+
[
|
82 |
+
301.47711181640625,
|
83 |
+
219.50289916992188
|
84 |
+
],
|
85 |
+
[
|
86 |
+
308.8260803222656,
|
87 |
+
220.3004608154297
|
88 |
+
],
|
89 |
+
[
|
90 |
+
315.6751403808594,
|
91 |
+
219.62095642089844
|
92 |
+
],
|
93 |
+
[
|
94 |
+
317.8089599609375,
|
95 |
+
221.09295654296875
|
96 |
+
],
|
97 |
+
[
|
98 |
+
320.73956298828125,
|
99 |
+
221.21011352539062
|
100 |
+
],
|
101 |
+
[
|
102 |
+
317.1898193359375,
|
103 |
+
221.21250915527344
|
104 |
+
],
|
105 |
+
[
|
106 |
+
319.5433349609375,
|
107 |
+
217.74606323242188
|
108 |
+
],
|
109 |
+
[
|
110 |
+
317.6147155761719,
|
111 |
+
207.62603759765625
|
112 |
+
],
|
113 |
+
[
|
114 |
+
308.29156494140625,
|
115 |
+
224.09878540039062
|
116 |
+
],
|
117 |
+
[
|
118 |
+
294.7052917480469,
|
119 |
+
230.4814910888672
|
120 |
+
],
|
121 |
+
[
|
122 |
+
298.7985534667969,
|
123 |
+
230.0016326904297
|
124 |
+
],
|
125 |
+
[
|
126 |
+
304.0728454589844,
|
127 |
+
226.04998779296875
|
128 |
+
],
|
129 |
+
[
|
130 |
+
314.6731872558594,
|
131 |
+
242.630126953125
|
132 |
+
]
|
133 |
+
],
|
134 |
+
[
|
135 |
+
[
|
136 |
+
214.7900390625,
|
137 |
+
230.28970336914062
|
138 |
+
],
|
139 |
+
[
|
140 |
+
214.2034912109375,
|
141 |
+
226.12539672851562
|
142 |
+
],
|
143 |
+
[
|
144 |
+
216.921630859375,
|
145 |
+
221.91062927246094
|
146 |
+
],
|
147 |
+
[
|
148 |
+
226.7117156982422,
|
149 |
+
219.55148315429688
|
150 |
+
],
|
151 |
+
[
|
152 |
+
232.1102294921875,
|
153 |
+
220.2542724609375
|
154 |
+
],
|
155 |
+
[
|
156 |
+
237.49270629882812,
|
157 |
+
219.5577850341797
|
158 |
+
],
|
159 |
+
[
|
160 |
+
240.1033935546875,
|
161 |
+
220.77169799804688
|
162 |
+
],
|
163 |
+
[
|
164 |
+
243.27154541015625,
|
165 |
+
220.56069946289062
|
166 |
+
],
|
167 |
+
[
|
168 |
+
240.3792724609375,
|
169 |
+
221.12344360351562
|
170 |
+
],
|
171 |
+
[
|
172 |
+
235.10897827148438,
|
173 |
+
216.4136962890625
|
174 |
+
],
|
175 |
+
[
|
176 |
+
234.0819091796875,
|
177 |
+
202.91900634765625
|
178 |
+
],
|
179 |
+
[
|
180 |
+
224.08642578125,
|
181 |
+
220.4688720703125
|
182 |
+
],
|
183 |
+
[
|
184 |
+
212.40911865234375,
|
185 |
+
227.7927703857422
|
186 |
+
],
|
187 |
+
[
|
188 |
+
218.22300720214844,
|
189 |
+
226.47549438476562
|
190 |
+
],
|
191 |
+
[
|
192 |
+
225.32315063476562,
|
193 |
+
221.8306884765625
|
194 |
+
],
|
195 |
+
[
|
196 |
+
234.59808349609375,
|
197 |
+
239.94235229492188
|
198 |
+
]
|
199 |
+
]
|
200 |
+
]
|
__assets__/demos/demo_4/trajectory.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c2904e38cbc8820daaa5f88085bbfc33aa3cd8b9be7d9588e02d6cadcccf2fa
|
3 |
+
size 973
|
__assets__/demos/demo_5/first_frame.jpg
ADDED
![]() |
__assets__/demos/demo_5/layer_0.jpg
ADDED
![]() |
__assets__/demos/demo_5/layer_1.jpg
ADDED
![]() |
__assets__/demos/demo_5/sketch.mp4
ADDED
Binary file (93.4 kB). View file
|
|
__assets__/demos/demo_5/trajectory.json
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
[
|
4 |
+
494.2274169921875,
|
5 |
+
22.271512985229492
|
6 |
+
],
|
7 |
+
[
|
8 |
+
499.44189453125,
|
9 |
+
21.746015548706055
|
10 |
+
],
|
11 |
+
[
|
12 |
+
504.0919189453125,
|
13 |
+
21.225364685058594
|
14 |
+
],
|
15 |
+
[
|
16 |
+
514.5880737304688,
|
17 |
+
20.82619285583496
|
18 |
+
],
|
19 |
+
[
|
20 |
+
520.4939575195312,
|
21 |
+
20.672199249267578
|
22 |
+
],
|
23 |
+
[
|
24 |
+
526.637451171875,
|
25 |
+
20.305557250976562
|
26 |
+
],
|
27 |
+
[
|
28 |
+
534.9617919921875,
|
29 |
+
20.358591079711914
|
30 |
+
],
|
31 |
+
[
|
32 |
+
539.2017211914062,
|
33 |
+
20.12591552734375
|
34 |
+
],
|
35 |
+
[
|
36 |
+
543.9376220703125,
|
37 |
+
20.107173919677734
|
38 |
+
],
|
39 |
+
[
|
40 |
+
549.5306396484375,
|
41 |
+
19.739456176757812
|
42 |
+
],
|
43 |
+
[
|
44 |
+
553.4171142578125,
|
45 |
+
20.842308044433594
|
46 |
+
],
|
47 |
+
[
|
48 |
+
554.49462890625,
|
49 |
+
20.15322494506836
|
50 |
+
],
|
51 |
+
[
|
52 |
+
559.0555419921875,
|
53 |
+
21.292396545410156
|
54 |
+
],
|
55 |
+
[
|
56 |
+
558.5130004882812,
|
57 |
+
21.357444763183594
|
58 |
+
],
|
59 |
+
[
|
60 |
+
561.72607421875,
|
61 |
+
20.114139556884766
|
62 |
+
],
|
63 |
+
[
|
64 |
+
560.4268798828125,
|
65 |
+
21.73964500427246
|
66 |
+
]
|
67 |
+
],
|
68 |
+
[
|
69 |
+
[
|
70 |
+
494.2274169921875,
|
71 |
+
48.27378463745117
|
72 |
+
],
|
73 |
+
[
|
74 |
+
494.85711669921875,
|
75 |
+
48.05669403076172
|
76 |
+
],
|
77 |
+
[
|
78 |
+
494.21563720703125,
|
79 |
+
48.0822868347168
|
80 |
+
],
|
81 |
+
[
|
82 |
+
492.88446044921875,
|
83 |
+
48.20854187011719
|
84 |
+
],
|
85 |
+
[
|
86 |
+
491.5914306640625,
|
87 |
+
48.36796569824219
|
88 |
+
],
|
89 |
+
[
|
90 |
+
490.6370849609375,
|
91 |
+
48.649070739746094
|
92 |
+
],
|
93 |
+
[
|
94 |
+
488.6202392578125,
|
95 |
+
48.874202728271484
|
96 |
+
],
|
97 |
+
[
|
98 |
+
487.603271484375,
|
99 |
+
49.16374969482422
|
100 |
+
],
|
101 |
+
[
|
102 |
+
486.469970703125,
|
103 |
+
49.414939880371094
|
104 |
+
],
|
105 |
+
[
|
106 |
+
484.92120361328125,
|
107 |
+
49.98759460449219
|
108 |
+
],
|
109 |
+
[
|
110 |
+
483.7000427246094,
|
111 |
+
50.26809310913086
|
112 |
+
],
|
113 |
+
[
|
114 |
+
482.22125244140625,
|
115 |
+
50.42219161987305
|
116 |
+
],
|
117 |
+
[
|
118 |
+
480.54931640625,
|
119 |
+
50.766448974609375
|
120 |
+
],
|
121 |
+
[
|
122 |
+
479.24481201171875,
|
123 |
+
51.03229522705078
|
124 |
+
],
|
125 |
+
[
|
126 |
+
478.1097106933594,
|
127 |
+
51.489837646484375
|
128 |
+
],
|
129 |
+
[
|
130 |
+
476.470947265625,
|
131 |
+
52.048194885253906
|
132 |
+
]
|
133 |
+
],
|
134 |
+
[
|
135 |
+
[
|
136 |
+
64.8839111328125,
|
137 |
+
287.4947204589844
|
138 |
+
],
|
139 |
+
[
|
140 |
+
81.71736145019531,
|
141 |
+
288.09869384765625
|
142 |
+
],
|
143 |
+
[
|
144 |
+
100.02552795410156,
|
145 |
+
288.89111328125
|
146 |
+
],
|
147 |
+
[
|
148 |
+
128.72686767578125,
|
149 |
+
289.8943176269531
|
150 |
+
],
|
151 |
+
[
|
152 |
+
149.62322998046875,
|
153 |
+
290.7263488769531
|
154 |
+
],
|
155 |
+
[
|
156 |
+
170.50192260742188,
|
157 |
+
291.29925537109375
|
158 |
+
],
|
159 |
+
[
|
160 |
+
203.6192626953125,
|
161 |
+
292.2691345214844
|
162 |
+
],
|
163 |
+
[
|
164 |
+
227.08547973632812,
|
165 |
+
292.68035888671875
|
166 |
+
],
|
167 |
+
[
|
168 |
+
250.68621826171875,
|
169 |
+
293.3591613769531
|
170 |
+
],
|
171 |
+
[
|
172 |
+
286.62176513671875,
|
173 |
+
294.1515197753906
|
174 |
+
],
|
175 |
+
[
|
176 |
+
311.21240234375,
|
177 |
+
294.3829650878906
|
178 |
+
],
|
179 |
+
[
|
180 |
+
335.68389892578125,
|
181 |
+
294.7114562988281
|
182 |
+
],
|
183 |
+
[
|
184 |
+
373.18115234375,
|
185 |
+
295.2404479980469
|
186 |
+
],
|
187 |
+
[
|
188 |
+
397.2961120605469,
|
189 |
+
295.111572265625
|
190 |
+
],
|
191 |
+
[
|
192 |
+
422.346923828125,
|
193 |
+
295.5068054199219
|
194 |
+
],
|
195 |
+
[
|
196 |
+
457.2431335449219,
|
197 |
+
295.49383544921875
|
198 |
+
]
|
199 |
+
],
|
200 |
+
[
|
201 |
+
[
|
202 |
+
64.8839111328125,
|
203 |
+
235.4901580810547
|
204 |
+
],
|
205 |
+
[
|
206 |
+
61.33024597167969,
|
207 |
+
235.5504150390625
|
208 |
+
],
|
209 |
+
[
|
210 |
+
57.36271667480469,
|
211 |
+
235.6099090576172
|
212 |
+
],
|
213 |
+
[
|
214 |
+
50.592864990234375,
|
215 |
+
235.9037322998047
|
216 |
+
],
|
217 |
+
[
|
218 |
+
46.184783935546875,
|
219 |
+
235.94981384277344
|
220 |
+
],
|
221 |
+
[
|
222 |
+
42.2303466796875,
|
223 |
+
235.8488006591797
|
224 |
+
],
|
225 |
+
[
|
226 |
+
35.333221435546875,
|
227 |
+
235.73272705078125
|
228 |
+
],
|
229 |
+
[
|
230 |
+
29.864356994628906,
|
231 |
+
236.13253784179688
|
232 |
+
],
|
233 |
+
[
|
234 |
+
24.596290588378906,
|
235 |
+
236.366943359375
|
236 |
+
],
|
237 |
+
[
|
238 |
+
17.585124969482422,
|
239 |
+
236.61953735351562
|
240 |
+
],
|
241 |
+
[
|
242 |
+
12.934989929199219,
|
243 |
+
236.7737274169922
|
244 |
+
],
|
245 |
+
[
|
246 |
+
8.478790283203125,
|
247 |
+
236.75421142578125
|
248 |
+
],
|
249 |
+
[
|
250 |
+
2.206012725830078,
|
251 |
+
236.9993896484375
|
252 |
+
],
|
253 |
+
[
|
254 |
+
-2.862123489379883,
|
255 |
+
237.2617645263672
|
256 |
+
],
|
257 |
+
[
|
258 |
+
-7.3507843017578125,
|
259 |
+
237.2784423828125
|
260 |
+
],
|
261 |
+
[
|
262 |
+
-12.782325744628906,
|
263 |
+
237.2703094482422
|
264 |
+
]
|
265 |
+
],
|
266 |
+
[
|
267 |
+
[
|
268 |
+
92.88457489013672,
|
269 |
+
225.0892333984375
|
270 |
+
],
|
271 |
+
[
|
272 |
+
88.737548828125,
|
273 |
+
225.09442138671875
|
274 |
+
],
|
275 |
+
[
|
276 |
+
84.08223724365234,
|
277 |
+
225.36553955078125
|
278 |
+
],
|
279 |
+
[
|
280 |
+
76.90846252441406,
|
281 |
+
225.7208251953125
|
282 |
+
],
|
283 |
+
[
|
284 |
+
72.26066589355469,
|
285 |
+
225.9451141357422
|
286 |
+
],
|
287 |
+
[
|
288 |
+
67.7042465209961,
|
289 |
+
226.13169860839844
|
290 |
+
],
|
291 |
+
[
|
292 |
+
60.917144775390625,
|
293 |
+
226.32199096679688
|
294 |
+
],
|
295 |
+
[
|
296 |
+
55.98236083984375,
|
297 |
+
226.5792236328125
|
298 |
+
],
|
299 |
+
[
|
300 |
+
51.30162811279297,
|
301 |
+
226.9581298828125
|
302 |
+
],
|
303 |
+
[
|
304 |
+
44.654823303222656,
|
305 |
+
227.06956481933594
|
306 |
+
],
|
307 |
+
[
|
308 |
+
40.06951904296875,
|
309 |
+
227.15420532226562
|
310 |
+
],
|
311 |
+
[
|
312 |
+
35.59206771850586,
|
313 |
+
227.13719177246094
|
314 |
+
],
|
315 |
+
[
|
316 |
+
29.056011199951172,
|
317 |
+
227.17002868652344
|
318 |
+
],
|
319 |
+
[
|
320 |
+
24.805736541748047,
|
321 |
+
227.24826049804688
|
322 |
+
],
|
323 |
+
[
|
324 |
+
20.537612915039062,
|
325 |
+
227.34564208984375
|
326 |
+
],
|
327 |
+
[
|
328 |
+
14.309333801269531,
|
329 |
+
227.30154418945312
|
330 |
+
]
|
331 |
+
]
|
332 |
+
]
|
__assets__/demos/demo_5/trajectory.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e9da4a1142e8210f0486ff1682fe7853e8714ecf813bfef4b9019efbc102f61
|
3 |
+
size 1222
|
__assets__/figs/demos.gif
ADDED
![]() |
Git LFS Details
|
app.py
ADDED
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from torchvision.transforms import functional as F
|
9 |
+
|
10 |
+
import spaces
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from diffusers import DDIMScheduler
|
15 |
+
|
16 |
+
from lvdm.models.unet import UNetModel
|
17 |
+
from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref
|
18 |
+
from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler
|
19 |
+
from lvdm.models.layer_controlnet import LayerControlNet
|
20 |
+
from lvdm.pipelines.pipeline_animation import AnimationPipeline
|
21 |
+
from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj
|
22 |
+
|
23 |
+
from einops import rearrange
|
24 |
+
import cv2
|
25 |
+
import decord
|
26 |
+
from PIL import Image
|
27 |
+
import numpy as np
|
28 |
+
from scipy.interpolate import PchipInterpolator
|
29 |
+
|
30 |
+
SAVE_DIR = "outputs"
|
31 |
+
LENGTH = 16
|
32 |
+
WIDTH = 512
|
33 |
+
HEIGHT = 320
|
34 |
+
LAYER_CAPACITY = 4
|
35 |
+
DEVICE = "cuda"
|
36 |
+
|
37 |
+
os.makedirs("checkpoints", exist_ok=True)
|
38 |
+
|
39 |
+
snapshot_download(
|
40 |
+
"Yuppie1204/LayerAnimate-Mix",
|
41 |
+
local_dir="checkpoints/LayerAnimate-Mix",
|
42 |
+
)
|
43 |
+
|
44 |
+
class LayerAnimate:
|
45 |
+
|
46 |
+
@spaces.GPU
|
47 |
+
def __init__(self):
|
48 |
+
self.savedir = SAVE_DIR
|
49 |
+
os.makedirs(self.savedir, exist_ok=True)
|
50 |
+
|
51 |
+
self.weight_dtype = torch.bfloat16
|
52 |
+
self.device = DEVICE
|
53 |
+
self.text_encoder = FrozenOpenCLIPEmbedder().eval()
|
54 |
+
self.image_encoder = FrozenOpenCLIPImageEmbedderV2().eval()
|
55 |
+
|
56 |
+
self.W = WIDTH
|
57 |
+
self.H = HEIGHT
|
58 |
+
self.L = LENGTH
|
59 |
+
self.layer_capacity = LAYER_CAPACITY
|
60 |
+
|
61 |
+
self.transforms = transforms.Compose([
|
62 |
+
transforms.Resize(min(self.H, self.W)),
|
63 |
+
transforms.CenterCrop((self.H, self.W)),
|
64 |
+
])
|
65 |
+
self.pipeline = None
|
66 |
+
self.generator = None
|
67 |
+
# sample_grid is used to generate fixed trajectories to freeze static layers
|
68 |
+
self.sample_grid = np.meshgrid(np.linspace(0, self.W - 1, 10, dtype=int), np.linspace(0, self.H - 1, 10, dtype=int))
|
69 |
+
self.sample_grid = np.stack(self.sample_grid, axis=-1).reshape(-1, 1, 2)
|
70 |
+
self.sample_grid = np.repeat(self.sample_grid, self.L, axis=1) # [N, F, 2]
|
71 |
+
|
72 |
+
@spaces.GPU
|
73 |
+
def set_seed(self, seed):
|
74 |
+
np.random.seed(seed)
|
75 |
+
torch.manual_seed(seed)
|
76 |
+
self.generator = torch.Generator(self.device).manual_seed(seed)
|
77 |
+
|
78 |
+
@spaces.GPU
|
79 |
+
def set_model(self, pretrained_model_path):
|
80 |
+
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
81 |
+
image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
|
82 |
+
vae, vae_dualref = None, None
|
83 |
+
if "I2V" or "Mix" in pretrained_model_path:
|
84 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
|
85 |
+
if "Interp" or "Mix" in pretrained_model_path:
|
86 |
+
vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
|
87 |
+
unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
|
88 |
+
layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
|
89 |
+
|
90 |
+
self.pipeline = AnimationPipeline(
|
91 |
+
vae=vae, vae_dualref=vae_dualref, text_encoder=self.text_encoder, image_encoder=self.image_encoder, image_projector=image_projector,
|
92 |
+
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
|
93 |
+
).to(device=self.device, dtype=self.weight_dtype)
|
94 |
+
if "Interp" or "Mix" in pretrained_model_path:
|
95 |
+
self.pipeline.vae_dualref.decoder.to(dtype=torch.float32)
|
96 |
+
return pretrained_model_path
|
97 |
+
|
98 |
+
def upload_image(self, image):
|
99 |
+
image = self.transforms(image)
|
100 |
+
return image
|
101 |
+
|
102 |
+
def run(self, input_image, input_image_end, pretrained_model_path, seed,
|
103 |
+
prompt, n_prompt, num_inference_steps, guidance_scale,
|
104 |
+
*layer_args):
|
105 |
+
self.set_seed(seed)
|
106 |
+
global layer_tracking_points
|
107 |
+
args_layer_tracking_points = [layer_tracking_points[i].value for i in range(self.layer_capacity)]
|
108 |
+
|
109 |
+
args_layer_masks = layer_args[:self.layer_capacity]
|
110 |
+
args_layer_masks_end = layer_args[self.layer_capacity : 2 * self.layer_capacity]
|
111 |
+
args_layer_controls = layer_args[2 * self.layer_capacity : 3 * self.layer_capacity]
|
112 |
+
args_layer_scores = list(layer_args[3 * self.layer_capacity : 4 * self.layer_capacity])
|
113 |
+
args_layer_sketches = layer_args[4 * self.layer_capacity : 5 * self.layer_capacity]
|
114 |
+
args_layer_valids = layer_args[5 * self.layer_capacity : 6 * self.layer_capacity]
|
115 |
+
args_layer_statics = layer_args[6 * self.layer_capacity : 7 * self.layer_capacity]
|
116 |
+
for layer_idx in range(self.layer_capacity):
|
117 |
+
if args_layer_controls[layer_idx] != "score":
|
118 |
+
args_layer_scores[layer_idx] = -1
|
119 |
+
if args_layer_statics[layer_idx]:
|
120 |
+
args_layer_scores[layer_idx] = 0
|
121 |
+
|
122 |
+
mode = "i2v"
|
123 |
+
image1 = F.to_tensor(input_image) * 2 - 1
|
124 |
+
frame_tensor = image1[None].to(self.device) # [F, C, H, W]
|
125 |
+
if input_image_end is not None:
|
126 |
+
mode = "interpolate"
|
127 |
+
image2 = F.to_tensor(input_image_end) * 2 - 1
|
128 |
+
frame_tensor2 = image2[None].to(self.device)
|
129 |
+
frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
|
130 |
+
frame_tensor = frame_tensor[None]
|
131 |
+
|
132 |
+
if mode == "interpolate":
|
133 |
+
layer_masks = torch.zeros((1, self.layer_capacity, 2, 1, self.H, self.W), dtype=torch.bool)
|
134 |
+
else:
|
135 |
+
layer_masks = torch.zeros((1, self.layer_capacity, 1, 1, self.H, self.W), dtype=torch.bool)
|
136 |
+
for layer_idx in range(self.layer_capacity):
|
137 |
+
if args_layer_masks[layer_idx] is not None:
|
138 |
+
mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
|
139 |
+
layer_masks[0, layer_idx, 0] = mask
|
140 |
+
if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
|
141 |
+
mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
|
142 |
+
layer_masks[0, layer_idx, 1] = mask
|
143 |
+
layer_masks = layer_masks.to(self.device)
|
144 |
+
layer_regions = layer_masks * frame_tensor[:, None]
|
145 |
+
layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=self.device)
|
146 |
+
motion_scores = torch.tensor([args_layer_scores], dtype=self.weight_dtype, device=self.device)
|
147 |
+
layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=self.device)
|
148 |
+
|
149 |
+
sketch = torch.ones((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
|
150 |
+
for layer_idx in range(self.layer_capacity):
|
151 |
+
sketch_path = args_layer_sketches[layer_idx]
|
152 |
+
if sketch_path is not None:
|
153 |
+
video_reader = decord.VideoReader(sketch_path)
|
154 |
+
assert len(video_reader) == self.L, f"Input the length of sketch sequence should match the video length."
|
155 |
+
video_frames = video_reader.get_batch(range(self.L)).asnumpy()
|
156 |
+
sketch_values = [F.to_tensor(self.transforms(Image.fromarray(frame))) for frame in video_frames]
|
157 |
+
sketch_values = torch.stack(sketch_values) * 2 - 1
|
158 |
+
sketch[0, layer_idx] = sketch_values
|
159 |
+
sketch = sketch.to(self.device)
|
160 |
+
|
161 |
+
heatmap = torch.zeros((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
|
162 |
+
heatmap[:, :, :, 0] -= 1
|
163 |
+
trajectory = []
|
164 |
+
traj_layer_index = []
|
165 |
+
for layer_idx in range(self.layer_capacity):
|
166 |
+
tracking_points = args_layer_tracking_points[layer_idx]
|
167 |
+
if args_layer_statics[layer_idx]:
|
168 |
+
# generate pseudo trajectory for static layers
|
169 |
+
temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
|
170 |
+
valid_flag = temp_layer_mask[self.sample_grid[:, 0, 1], self.sample_grid[:, 0, 0]]
|
171 |
+
valid_grid = self.sample_grid[valid_flag] # [F, N, 2]
|
172 |
+
trajectory.extend(list(valid_grid))
|
173 |
+
traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
|
174 |
+
else:
|
175 |
+
for temp_track in tracking_points:
|
176 |
+
if len(temp_track) > 1:
|
177 |
+
x = [point[0] for point in temp_track]
|
178 |
+
y = [point[1] for point in temp_track]
|
179 |
+
t = np.linspace(0, 1, len(temp_track))
|
180 |
+
fx = PchipInterpolator(t, x)
|
181 |
+
fy = PchipInterpolator(t, y)
|
182 |
+
t_new = np.linspace(0, 1, self.L)
|
183 |
+
x_new = fx(t_new)
|
184 |
+
y_new = fy(t_new)
|
185 |
+
temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
|
186 |
+
trajectory.append(temp_traj)
|
187 |
+
traj_layer_index.append(layer_idx)
|
188 |
+
elif len(temp_track) == 1:
|
189 |
+
trajectory.append(np.array(temp_track * self.L))
|
190 |
+
traj_layer_index.append(layer_idx)
|
191 |
+
|
192 |
+
trajectory = np.stack(trajectory)
|
193 |
+
trajectory = np.transpose(trajectory, (1, 0, 2))
|
194 |
+
traj_layer_index = np.array(traj_layer_index)
|
195 |
+
heatmap = generate_gaussian_heatmap(trajectory, self.W, self.H, traj_layer_index, self.layer_capacity, offset=True)
|
196 |
+
heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
|
197 |
+
graymap, offset = heatmap[:, :1], heatmap[:, 1:]
|
198 |
+
graymap = graymap / 255.
|
199 |
+
rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
|
200 |
+
rad_max = torch.max(rad)
|
201 |
+
epsilon = 1e-5
|
202 |
+
offset = offset / (rad_max + epsilon)
|
203 |
+
graymap = graymap * 2 - 1
|
204 |
+
heatmap = torch.cat([graymap, offset], dim=1)
|
205 |
+
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity)
|
206 |
+
heatmap = heatmap[None]
|
207 |
+
heatmap = heatmap.to(self.device)
|
208 |
+
|
209 |
+
sample = self.pipeline(
|
210 |
+
prompt,
|
211 |
+
self.L,
|
212 |
+
self.H,
|
213 |
+
self.W,
|
214 |
+
frame_tensor,
|
215 |
+
layer_masks = layer_masks,
|
216 |
+
layer_regions = layer_regions,
|
217 |
+
layer_static = layer_static,
|
218 |
+
motion_scores = motion_scores,
|
219 |
+
sketch = sketch,
|
220 |
+
trajectory = heatmap,
|
221 |
+
layer_validity = layer_validity,
|
222 |
+
num_inference_steps = num_inference_steps,
|
223 |
+
guidance_scale = guidance_scale,
|
224 |
+
guidance_rescale = 0.7,
|
225 |
+
negative_prompt = n_prompt,
|
226 |
+
num_videos_per_prompt = 1,
|
227 |
+
eta = 1.0,
|
228 |
+
generator = self.generator,
|
229 |
+
fps = 24,
|
230 |
+
mode = mode,
|
231 |
+
weight_dtype = self.weight_dtype,
|
232 |
+
output_type = "tensor",
|
233 |
+
).videos
|
234 |
+
output_video_path = os.path.join(self.savedir, "video.mp4")
|
235 |
+
save_videos_grid(sample, output_video_path, fps=8)
|
236 |
+
output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4")
|
237 |
+
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
|
238 |
+
for traj_idx in range(trajectory.shape[1]):
|
239 |
+
if not args_layer_statics[traj_layer_index[traj_idx]]:
|
240 |
+
vis_traj_flag[traj_idx] = True
|
241 |
+
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
|
242 |
+
save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
|
243 |
+
return output_video_path, output_video_traj_path
|
244 |
+
|
245 |
+
|
246 |
+
def update_layer_region(image, layer_mask):
|
247 |
+
if image is None or layer_mask is None:
|
248 |
+
return None, False
|
249 |
+
layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float()
|
250 |
+
image = F.to_tensor(image)
|
251 |
+
layer_region = image * layer_mask_tensor
|
252 |
+
layer_region = F.to_pil_image(layer_region)
|
253 |
+
layer_region.putalpha(layer_mask)
|
254 |
+
return layer_region, True
|
255 |
+
|
256 |
+
def control_layers(control_type):
|
257 |
+
if control_type == "score":
|
258 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
259 |
+
elif control_type == "trajectory":
|
260 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
261 |
+
else:
|
262 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
263 |
+
|
264 |
+
def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask):
|
265 |
+
first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float()
|
266 |
+
first_frame = F.to_tensor(first_frame)
|
267 |
+
first_region = first_frame * first_mask_tensor
|
268 |
+
first_region = F.to_pil_image(first_region)
|
269 |
+
first_region.putalpha(first_mask)
|
270 |
+
transparent_background = first_region.convert('RGBA')
|
271 |
+
|
272 |
+
if last_frame is not None and last_mask is not None:
|
273 |
+
last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float()
|
274 |
+
last_frame = F.to_tensor(last_frame)
|
275 |
+
last_region = last_frame * last_mask_tensor
|
276 |
+
last_region = F.to_pil_image(last_region)
|
277 |
+
last_region.putalpha(last_mask)
|
278 |
+
transparent_background_end = last_region.convert('RGBA')
|
279 |
+
|
280 |
+
width, height = transparent_background.size
|
281 |
+
transparent_layer = np.zeros((height, width, 4))
|
282 |
+
for track in tracking_points:
|
283 |
+
if len(track) > 1:
|
284 |
+
for i in range(len(track)-1):
|
285 |
+
start_point = np.array(track[i], dtype=np.int32)
|
286 |
+
end_point = np.array(track[i+1], dtype=np.int32)
|
287 |
+
vx = end_point[0] - start_point[0]
|
288 |
+
vy = end_point[1] - start_point[1]
|
289 |
+
arrow_length = max(np.sqrt(vx**2 + vy**2), 1)
|
290 |
+
if i == len(track)-2:
|
291 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
292 |
+
else:
|
293 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
294 |
+
elif len(track) == 1:
|
295 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
296 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
297 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
298 |
+
if last_frame is not None and last_mask is not None:
|
299 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
300 |
+
else:
|
301 |
+
trajectory_map_end = None
|
302 |
+
return trajectory_map, trajectory_map_end
|
303 |
+
|
304 |
+
def add_drag(layer_idx):
|
305 |
+
global layer_tracking_points
|
306 |
+
tracking_points = layer_tracking_points[layer_idx].value
|
307 |
+
tracking_points.append([])
|
308 |
+
return
|
309 |
+
|
310 |
+
def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask):
|
311 |
+
global layer_tracking_points
|
312 |
+
tracking_points = layer_tracking_points[layer_idx].value
|
313 |
+
tracking_points.pop()
|
314 |
+
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
|
315 |
+
return trajectory_map, trajectory_map_end
|
316 |
+
|
317 |
+
def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask):
|
318 |
+
global layer_tracking_points
|
319 |
+
tracking_points = layer_tracking_points[layer_idx].value
|
320 |
+
tracking_points[-1].pop()
|
321 |
+
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
|
322 |
+
return trajectory_map, trajectory_map_end
|
323 |
+
|
324 |
+
def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData
|
325 |
+
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
326 |
+
global layer_tracking_points
|
327 |
+
tracking_points = layer_tracking_points[layer_idx].value
|
328 |
+
tracking_points[-1].append(evt.index)
|
329 |
+
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
|
330 |
+
return trajectory_map, trajectory_map_end
|
331 |
+
|
332 |
+
def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask):
|
333 |
+
global layer_tracking_points
|
334 |
+
layer_tracking_points[layer_idx].value = [[]]
|
335 |
+
tracking_points = layer_tracking_points[layer_idx].value
|
336 |
+
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
|
337 |
+
return trajectory_map, trajectory_map_end
|
338 |
+
|
339 |
+
def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask):
|
340 |
+
if tracking_path is None:
|
341 |
+
layer_region, _ = update_layer_region(first_frame, first_mask)
|
342 |
+
layer_region_end, _ = update_layer_region(last_frame, last_mask)
|
343 |
+
return layer_region, layer_region_end
|
344 |
+
|
345 |
+
global layer_tracking_points
|
346 |
+
with open(tracking_path, "r") as f:
|
347 |
+
tracking_points = json.load(f)
|
348 |
+
layer_tracking_points[layer_idx].value = tracking_points
|
349 |
+
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
|
350 |
+
return trajectory_map, trajectory_map_end
|
351 |
+
|
352 |
+
def reset_all_controls():
|
353 |
+
global layer_tracking_points
|
354 |
+
outputs = []
|
355 |
+
# Reset tracking points states
|
356 |
+
for layer_idx in range(LAYER_CAPACITY):
|
357 |
+
layer_tracking_points[layer_idx].value = [[]]
|
358 |
+
|
359 |
+
# Reset global components
|
360 |
+
outputs.extend([
|
361 |
+
"an anime scene.", # text prompt
|
362 |
+
"", # negative text prompt
|
363 |
+
50, # inference steps
|
364 |
+
7.5, # guidance scale
|
365 |
+
42, # seed
|
366 |
+
None, # input image
|
367 |
+
None, # input image end
|
368 |
+
None, # output video
|
369 |
+
None, # output video with trajectory
|
370 |
+
])
|
371 |
+
# Reset layer controls visibility
|
372 |
+
outputs.extend([None] * LAYER_CAPACITY) # layer masks
|
373 |
+
outputs.extend([None] * LAYER_CAPACITY) # layer masks end
|
374 |
+
outputs.extend([None] * LAYER_CAPACITY) # layer regions
|
375 |
+
outputs.extend([None] * LAYER_CAPACITY) # layer regions end
|
376 |
+
outputs.extend(["sketch"] * LAYER_CAPACITY) # layer controls
|
377 |
+
outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)]) # layer score controls
|
378 |
+
outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)]) # layer trajectory control 4 buttons
|
379 |
+
outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)]) # layer trajectory file
|
380 |
+
outputs.extend([None] * LAYER_CAPACITY) # layer sketch controls
|
381 |
+
outputs.extend([False] * LAYER_CAPACITY) # layer validity
|
382 |
+
outputs.extend([False] * LAYER_CAPACITY) # layer statics
|
383 |
+
return outputs
|
384 |
+
|
385 |
+
if __name__ == "__main__":
|
386 |
+
with gr.Blocks() as demo:
|
387 |
+
gr.Markdown("""<h1 align="center">LayerAnimate: Layer-level Control for Animation</h1><br>""")
|
388 |
+
|
389 |
+
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2501.08295'><b>LayerAnimate: Layer-level Control for Animation</b></a>.<br>
|
390 |
+
Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate<br>
|
391 |
+
The template is inspired by Framer.""")
|
392 |
+
|
393 |
+
gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960)
|
394 |
+
|
395 |
+
gr.Markdown("""## Usage: <br>
|
396 |
+
1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.<br>
|
397 |
+
2. Upload frames in the right column.<br>
|
398 |
+
  1.1. Upload the first frame.<br>
|
399 |
+
  1.2. (Optional) Upload the last frame.<br>
|
400 |
+
3. Input layer-level controls in the left column.<br>
|
401 |
+
  2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.<br>
|
402 |
+
  2.2. Choose a control type from "motion score", "trajectory" and "sketch".<br>
|
403 |
+
  2.3. For trajectory control, you can draw trajectories on layer regions.<br>
|
404 |
+
    2.3.1. Click "Add New Trajectory" to add a new trajectory.<br>
|
405 |
+
    2.3.2. Click "Reset" to reset all trajectories.<br>
|
406 |
+
    2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.<br>
|
407 |
+
    2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.<br>
|
408 |
+
    2.3.5. Or upload a trajectory file in json format, we provide examples below.<br>
|
409 |
+
  2.4. For sketch control, you can upload a sketch video.<br>
|
410 |
+
4. We provide four layers for you to control, and it is not necessary to use all of them.<br>
|
411 |
+
5. Click "Run" button to generate videos. <br>
|
412 |
+
6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**<br>
|
413 |
+
""")
|
414 |
+
|
415 |
+
layeranimate = LayerAnimate()
|
416 |
+
layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)]
|
417 |
+
layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)]
|
418 |
+
layer_masks = []
|
419 |
+
layer_masks_end = []
|
420 |
+
layer_regions = []
|
421 |
+
layer_regions_end = []
|
422 |
+
layer_controls = []
|
423 |
+
layer_score_controls = []
|
424 |
+
layer_traj_controls = []
|
425 |
+
layer_traj_files = []
|
426 |
+
layer_sketch_controls = []
|
427 |
+
layer_statics = []
|
428 |
+
layer_valids = []
|
429 |
+
|
430 |
+
with gr.Row():
|
431 |
+
with gr.Column(scale=1):
|
432 |
+
for layer_idx in range(LAYER_CAPACITY):
|
433 |
+
with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False):
|
434 |
+
gr.Markdown("""<div align="center"><b>Layer Masks</b></div>""")
|
435 |
+
gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.")
|
436 |
+
with gr.Row():
|
437 |
+
with gr.Column():
|
438 |
+
layer_masks.append(gr.Image(
|
439 |
+
label="Layer Mask for First Frame",
|
440 |
+
height=320,
|
441 |
+
width=512,
|
442 |
+
image_mode="L",
|
443 |
+
type="pil",
|
444 |
+
))
|
445 |
+
|
446 |
+
with gr.Column():
|
447 |
+
layer_masks_end.append(gr.Image(
|
448 |
+
label="Layer Mask for Last Frame",
|
449 |
+
height=320,
|
450 |
+
width=512,
|
451 |
+
image_mode="L",
|
452 |
+
type="pil",
|
453 |
+
))
|
454 |
+
gr.Markdown("""<div align="center"><b>Layer Regions</b></div>""")
|
455 |
+
with gr.Row():
|
456 |
+
with gr.Column():
|
457 |
+
layer_regions.append(gr.Image(
|
458 |
+
label="Layer Region for First Frame",
|
459 |
+
height=320,
|
460 |
+
width=512,
|
461 |
+
image_mode="RGBA",
|
462 |
+
type="pil",
|
463 |
+
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
|
464 |
+
))
|
465 |
+
|
466 |
+
with gr.Column():
|
467 |
+
layer_regions_end.append(gr.Image(
|
468 |
+
label="Layer Region for Last Frame",
|
469 |
+
height=320,
|
470 |
+
width=512,
|
471 |
+
image_mode="RGBA",
|
472 |
+
type="pil",
|
473 |
+
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
|
474 |
+
))
|
475 |
+
layer_controls.append(
|
476 |
+
gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch")
|
477 |
+
)
|
478 |
+
layer_score_controls.append(
|
479 |
+
gr.Number(label="Motion Score", value=-1, visible=False)
|
480 |
+
)
|
481 |
+
layer_traj_controls.append(
|
482 |
+
[
|
483 |
+
gr.Button(value="Add New Trajectory", visible=False),
|
484 |
+
gr.Button(value="Reset", visible=False),
|
485 |
+
gr.Button(value="Delete Last Step", visible=False),
|
486 |
+
gr.Button(value="Delete Last Trajectory", visible=False),
|
487 |
+
]
|
488 |
+
)
|
489 |
+
layer_traj_files.append(
|
490 |
+
gr.File(label="Trajectory File", visible=False)
|
491 |
+
)
|
492 |
+
layer_sketch_controls.append(
|
493 |
+
gr.Video(label="Sketch", height=320, width=512, visible=True)
|
494 |
+
)
|
495 |
+
layer_controls[layer_idx].change(
|
496 |
+
fn=control_layers,
|
497 |
+
inputs=layer_controls[layer_idx],
|
498 |
+
outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]]
|
499 |
+
)
|
500 |
+
with gr.Row():
|
501 |
+
layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?"))
|
502 |
+
layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?"))
|
503 |
+
|
504 |
+
with gr.Column(scale=1):
|
505 |
+
pretrained_model_path = gr.Dropdown(
|
506 |
+
label="Pretrained Model",
|
507 |
+
choices=[
|
508 |
+
"None",
|
509 |
+
"checkpoints/LayerAnimate-Mix",
|
510 |
+
],
|
511 |
+
value="None",
|
512 |
+
)
|
513 |
+
text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.")
|
514 |
+
text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="")
|
515 |
+
with gr.Row():
|
516 |
+
num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000)
|
517 |
+
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
|
518 |
+
seed = gr.Number(label="Seed", value=42)
|
519 |
+
with gr.Row():
|
520 |
+
input_image = gr.Image(
|
521 |
+
label="First Frame",
|
522 |
+
height=320,
|
523 |
+
width=512,
|
524 |
+
type="pil",
|
525 |
+
)
|
526 |
+
input_image_end = gr.Image(
|
527 |
+
label="Last Frame",
|
528 |
+
height=320,
|
529 |
+
width=512,
|
530 |
+
type="pil",
|
531 |
+
)
|
532 |
+
run_button = gr.Button(value="Run")
|
533 |
+
with gr.Row():
|
534 |
+
output_video = gr.Video(
|
535 |
+
label="Output Video",
|
536 |
+
height=320,
|
537 |
+
width=512,
|
538 |
+
)
|
539 |
+
output_video_traj = gr.Video(
|
540 |
+
label="Output Video with Trajectory",
|
541 |
+
height=320,
|
542 |
+
width=512,
|
543 |
+
)
|
544 |
+
clear_button = gr.Button(value="Clear")
|
545 |
+
|
546 |
+
with gr.Row():
|
547 |
+
gr.Markdown("""
|
548 |
+
## Citation
|
549 |
+
```bibtex
|
550 |
+
@article{yang2025layeranimate,
|
551 |
+
author = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang},
|
552 |
+
title = {LayerAnimate: Layer-level Control for Animation},
|
553 |
+
journal = {arXiv preprint arXiv:2501.08295},
|
554 |
+
year = {2025},
|
555 |
+
}
|
556 |
+
```
|
557 |
+
""")
|
558 |
+
|
559 |
+
pretrained_model_path.input(layeranimate.set_model, pretrained_model_path, pretrained_model_path)
|
560 |
+
input_image.upload(layeranimate.upload_image, input_image, input_image)
|
561 |
+
input_image_end.upload(layeranimate.upload_image, input_image_end, input_image_end)
|
562 |
+
for i in range(LAYER_CAPACITY):
|
563 |
+
layer_masks[i].upload(layeranimate.upload_image, layer_masks[i], layer_masks[i])
|
564 |
+
layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
|
565 |
+
layer_masks_end[i].upload(layeranimate.upload_image, layer_masks_end[i], layer_masks_end[i])
|
566 |
+
layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
|
567 |
+
layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
|
568 |
+
layer_traj_controls[i][1].click(
|
569 |
+
reset_states,
|
570 |
+
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
571 |
+
[layer_regions[i], layer_regions_end[i]]
|
572 |
+
)
|
573 |
+
layer_traj_controls[i][2].click(
|
574 |
+
delete_last_step,
|
575 |
+
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
576 |
+
[layer_regions[i], layer_regions_end[i]]
|
577 |
+
)
|
578 |
+
layer_traj_controls[i][3].click(
|
579 |
+
delete_last_drag,
|
580 |
+
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
581 |
+
[layer_regions[i], layer_regions_end[i]]
|
582 |
+
)
|
583 |
+
layer_traj_files[i].change(
|
584 |
+
upload_tracking_points,
|
585 |
+
[layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
586 |
+
[layer_regions[i], layer_regions_end[i]]
|
587 |
+
)
|
588 |
+
layer_regions[i].select(
|
589 |
+
add_tracking_points,
|
590 |
+
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
591 |
+
[layer_regions[i], layer_regions_end[i]]
|
592 |
+
)
|
593 |
+
layer_regions_end[i].select(
|
594 |
+
add_tracking_points,
|
595 |
+
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
|
596 |
+
[layer_regions[i], layer_regions_end[i]]
|
597 |
+
)
|
598 |
+
run_button.click(
|
599 |
+
layeranimate.run,
|
600 |
+
[input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
|
601 |
+
*layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
|
602 |
+
[output_video, output_video_traj]
|
603 |
+
)
|
604 |
+
clear_button.click(
|
605 |
+
reset_all_controls,
|
606 |
+
[],
|
607 |
+
[
|
608 |
+
text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed,
|
609 |
+
input_image, input_image_end, output_video, output_video_traj,
|
610 |
+
*layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end,
|
611 |
+
*layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files,
|
612 |
+
*layer_sketch_controls, *layer_valids, *layer_statics
|
613 |
+
]
|
614 |
+
)
|
615 |
+
examples = gr.Examples(
|
616 |
+
examples=[
|
617 |
+
[
|
618 |
+
"__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg",
|
619 |
+
"score", "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None, None, True, False,
|
620 |
+
"score", "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None, None, True, False,
|
621 |
+
"trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1, "__assets__/demos/demo_3/trajectory.json", None, True, False,
|
622 |
+
"sketch", "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1, None, "__assets__/demos/demo_3/sketch.mp4", True, False,
|
623 |
+
52
|
624 |
+
],
|
625 |
+
[
|
626 |
+
"__assets__/demos/demo_4/first_frame.jpg", None,
|
627 |
+
"score", "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None, None, True, True,
|
628 |
+
"trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1, "__assets__/demos/demo_4/trajectory.json", None, True, False,
|
629 |
+
"sketch", "__assets__/demos/demo_4/layer_2.jpg", None, -1, None, "__assets__/demos/demo_4/sketch.mp4", True, False,
|
630 |
+
"score", None, None, -1, None, None, False, False,
|
631 |
+
42
|
632 |
+
],
|
633 |
+
[
|
634 |
+
"__assets__/demos/demo_5/first_frame.jpg", None,
|
635 |
+
"sketch", "__assets__/demos/demo_5/layer_0.jpg", None, -1, None, "__assets__/demos/demo_5/sketch.mp4", True, False,
|
636 |
+
"trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None, True, False,
|
637 |
+
"score", None, None, -1, None, None, False, False,
|
638 |
+
"score", None, None, -1, None, None, False, False,
|
639 |
+
47
|
640 |
+
],
|
641 |
+
],
|
642 |
+
inputs=[
|
643 |
+
input_image, input_image_end,
|
644 |
+
layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0],
|
645 |
+
layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1],
|
646 |
+
layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2],
|
647 |
+
layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3],
|
648 |
+
seed
|
649 |
+
],
|
650 |
+
)
|
651 |
+
demo.launch()
|
lvdm/basics.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
import torch.nn as nn
|
11 |
+
from .utils import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
def zero_module(module):
|
20 |
+
"""
|
21 |
+
Zero out the parameters of a module and return it.
|
22 |
+
"""
|
23 |
+
for p in module.parameters():
|
24 |
+
p.detach().zero_()
|
25 |
+
return module
|
26 |
+
|
27 |
+
def scale_module(module, scale):
|
28 |
+
"""
|
29 |
+
Scale the parameters of a module and return it.
|
30 |
+
"""
|
31 |
+
for p in module.parameters():
|
32 |
+
p.detach().mul_(scale)
|
33 |
+
return module
|
34 |
+
|
35 |
+
|
36 |
+
def conv_nd(dims, *args, **kwargs):
|
37 |
+
"""
|
38 |
+
Create a 1D, 2D, or 3D convolution module.
|
39 |
+
"""
|
40 |
+
if dims == 1:
|
41 |
+
return nn.Conv1d(*args, **kwargs)
|
42 |
+
elif dims == 2:
|
43 |
+
return nn.Conv2d(*args, **kwargs)
|
44 |
+
elif dims == 3:
|
45 |
+
return nn.Conv3d(*args, **kwargs)
|
46 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
47 |
+
|
48 |
+
|
49 |
+
def linear(*args, **kwargs):
|
50 |
+
"""
|
51 |
+
Create a linear module.
|
52 |
+
"""
|
53 |
+
return nn.Linear(*args, **kwargs)
|
54 |
+
|
55 |
+
|
56 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
57 |
+
"""
|
58 |
+
Create a 1D, 2D, or 3D average pooling module.
|
59 |
+
"""
|
60 |
+
if dims == 1:
|
61 |
+
return nn.AvgPool1d(*args, **kwargs)
|
62 |
+
elif dims == 2:
|
63 |
+
return nn.AvgPool2d(*args, **kwargs)
|
64 |
+
elif dims == 3:
|
65 |
+
return nn.AvgPool3d(*args, **kwargs)
|
66 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
67 |
+
|
68 |
+
|
69 |
+
def nonlinearity(type='silu'):
|
70 |
+
if type == 'silu':
|
71 |
+
return nn.SiLU()
|
72 |
+
elif type == 'leaky_relu':
|
73 |
+
return nn.LeakyReLU()
|
74 |
+
|
75 |
+
|
76 |
+
class GroupNormSpecific(nn.GroupNorm):
|
77 |
+
def forward(self, x):
|
78 |
+
return super().forward(x.float()).type(x.dtype)
|
79 |
+
|
80 |
+
|
81 |
+
def normalization(channels, num_groups=32):
|
82 |
+
"""
|
83 |
+
Make a standard normalization layer.
|
84 |
+
:param channels: number of input channels.
|
85 |
+
:return: an nn.Module for normalization.
|
86 |
+
"""
|
87 |
+
return GroupNormSpecific(num_groups, channels)
|
88 |
+
|
89 |
+
|
90 |
+
class HybridConditioner(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
93 |
+
super().__init__()
|
94 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
95 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
96 |
+
|
97 |
+
def forward(self, c_concat, c_crossattn):
|
98 |
+
c_concat = self.concat_conditioner(c_concat)
|
99 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
100 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
lvdm/common.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def gather_data(data, return_np=True):
|
9 |
+
''' gather data from multiple processes to one list '''
|
10 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
11 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
12 |
+
if return_np:
|
13 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
14 |
+
return data_list
|
15 |
+
|
16 |
+
def autocast(f):
|
17 |
+
def do_autocast(*args, **kwargs):
|
18 |
+
with torch.cuda.amp.autocast(enabled=True,
|
19 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
20 |
+
cache_enabled=torch.is_autocast_cache_enabled()):
|
21 |
+
return f(*args, **kwargs)
|
22 |
+
return do_autocast
|
23 |
+
|
24 |
+
|
25 |
+
def extract_into_tensor(a, t, x_shape):
|
26 |
+
b, *_ = t.shape
|
27 |
+
out = a.gather(-1, t)
|
28 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
29 |
+
|
30 |
+
|
31 |
+
def noise_like(shape, device, repeat=False):
|
32 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
33 |
+
noise = lambda: torch.randn(shape, device=device)
|
34 |
+
return repeat_noise() if repeat else noise()
|
35 |
+
|
36 |
+
|
37 |
+
def default(val, d):
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d() if isfunction(d) else d
|
41 |
+
|
42 |
+
def exists(val):
|
43 |
+
return val is not None
|
44 |
+
|
45 |
+
def identity(*args, **kwargs):
|
46 |
+
return nn.Identity()
|
47 |
+
|
48 |
+
def uniq(arr):
|
49 |
+
return{el: True for el in arr}.keys()
|
50 |
+
|
51 |
+
def mean_flat(tensor):
|
52 |
+
"""
|
53 |
+
Take the mean over all non-batch dimensions.
|
54 |
+
"""
|
55 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
56 |
+
|
57 |
+
def ismap(x):
|
58 |
+
if not isinstance(x, torch.Tensor):
|
59 |
+
return False
|
60 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
61 |
+
|
62 |
+
def isimage(x):
|
63 |
+
if not isinstance(x,torch.Tensor):
|
64 |
+
return False
|
65 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
66 |
+
|
67 |
+
def max_neg_value(t):
|
68 |
+
return -torch.finfo(t.dtype).max
|
69 |
+
|
70 |
+
def shape_to_str(x):
|
71 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
72 |
+
return shape_str
|
73 |
+
|
74 |
+
def init_(tensor):
|
75 |
+
dim = tensor.shape[-1]
|
76 |
+
std = 1 / math.sqrt(dim)
|
77 |
+
tensor.uniform_(-std, std)
|
78 |
+
return tensor
|
79 |
+
|
80 |
+
ckpt = torch.utils.checkpoint.checkpoint
|
81 |
+
def checkpoint(func, inputs, params, flag):
|
82 |
+
"""
|
83 |
+
Evaluate a function without caching intermediate activations, allowing for
|
84 |
+
reduced memory at the expense of extra compute in the backward pass.
|
85 |
+
:param func: the function to evaluate.
|
86 |
+
:param inputs: the argument sequence to pass to `func`.
|
87 |
+
:param params: a sequence of parameters `func` depends on but does not
|
88 |
+
explicitly take as arguments.
|
89 |
+
:param flag: if False, disable gradient checkpointing.
|
90 |
+
"""
|
91 |
+
if flag:
|
92 |
+
return ckpt(func, *inputs, use_reentrant=False)
|
93 |
+
else:
|
94 |
+
return func(*inputs)
|
lvdm/models/autoencoder.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from einops import rearrange
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.utils.checkpoint import checkpoint
|
10 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.models import ModelMixin
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
|
15 |
+
from ..modules.ae_modules import Encoder, Decoder
|
16 |
+
from ..modules.ae_dualref_modules import VideoDecoder
|
17 |
+
from ..utils import instantiate_from_config
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class DecoderOutput(BaseOutput):
|
22 |
+
"""
|
23 |
+
Output of decoding method.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
27 |
+
Decoded output sample of the model. Output of the last layer of the model.
|
28 |
+
"""
|
29 |
+
|
30 |
+
sample: torch.FloatTensor
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class AutoencoderKLOutput(BaseOutput):
|
35 |
+
"""
|
36 |
+
Output of AutoencoderKL encoding method.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
latent_dist (`DiagonalGaussianDistribution`):
|
40 |
+
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
|
41 |
+
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
|
42 |
+
"""
|
43 |
+
|
44 |
+
latent_dist: "DiagonalGaussianDistribution"
|
45 |
+
|
46 |
+
|
47 |
+
class AutoencoderKL(ModelMixin, ConfigMixin):
|
48 |
+
@register_to_config
|
49 |
+
def __init__(self,
|
50 |
+
ddconfig,
|
51 |
+
embed_dim,
|
52 |
+
image_key="image",
|
53 |
+
input_dim=4,
|
54 |
+
use_checkpoint=False,
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
self.image_key = image_key
|
58 |
+
self.encoder = Encoder(**ddconfig)
|
59 |
+
self.decoder = Decoder(**ddconfig)
|
60 |
+
assert ddconfig["double_z"]
|
61 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
62 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
63 |
+
self.embed_dim = embed_dim
|
64 |
+
self.input_dim = input_dim
|
65 |
+
self.use_checkpoint = use_checkpoint
|
66 |
+
|
67 |
+
def encode(self, x, return_hidden_states=False, **kwargs):
|
68 |
+
if return_hidden_states:
|
69 |
+
h, hidden = self.encoder(x, return_hidden_states)
|
70 |
+
moments = self.quant_conv(h)
|
71 |
+
posterior = DiagonalGaussianDistribution(moments)
|
72 |
+
return AutoencoderKLOutput(latent_dist=posterior), hidden
|
73 |
+
else:
|
74 |
+
h = self.encoder(x)
|
75 |
+
moments = self.quant_conv(h)
|
76 |
+
posterior = DiagonalGaussianDistribution(moments)
|
77 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
78 |
+
|
79 |
+
def decode(self, z, **kwargs):
|
80 |
+
if len(kwargs) == 0: ## use the original decoder in AutoencoderKL
|
81 |
+
z = self.post_quant_conv(z)
|
82 |
+
dec = self.decoder(z, **kwargs) ##change for SVD decoder by adding **kwargs
|
83 |
+
return dec
|
84 |
+
|
85 |
+
def forward(self, input, sample_posterior=True, **additional_decode_kwargs):
|
86 |
+
input_tuple = (input, )
|
87 |
+
forward_temp = partial(self._forward, sample_posterior=sample_posterior, **additional_decode_kwargs)
|
88 |
+
return checkpoint(forward_temp, input_tuple, self.parameters(), self.use_checkpoint)
|
89 |
+
|
90 |
+
|
91 |
+
def _forward(self, input, sample_posterior=True, **additional_decode_kwargs):
|
92 |
+
posterior = self.encode(input)[0]
|
93 |
+
if sample_posterior:
|
94 |
+
z = posterior.sample()
|
95 |
+
else:
|
96 |
+
z = posterior.mode()
|
97 |
+
dec = self.decode(z, **additional_decode_kwargs)
|
98 |
+
## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256])
|
99 |
+
return dec, posterior
|
100 |
+
|
101 |
+
def get_input(self, batch, k):
|
102 |
+
x = batch[k]
|
103 |
+
if x.dim() == 5 and self.input_dim == 4:
|
104 |
+
b,c,t,h,w = x.shape
|
105 |
+
self.b = b
|
106 |
+
self.t = t
|
107 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
108 |
+
|
109 |
+
return x
|
110 |
+
|
111 |
+
def get_last_layer(self):
|
112 |
+
return self.decoder.conv_out.weight
|
113 |
+
|
114 |
+
|
115 |
+
class AutoencoderKL_Dualref(AutoencoderKL):
|
116 |
+
@register_to_config
|
117 |
+
def __init__(self,
|
118 |
+
ddconfig,
|
119 |
+
embed_dim,
|
120 |
+
image_key="image",
|
121 |
+
input_dim=4,
|
122 |
+
use_checkpoint=False,
|
123 |
+
):
|
124 |
+
super().__init__(ddconfig, embed_dim, image_key, input_dim, use_checkpoint)
|
125 |
+
self.decoder = VideoDecoder(**ddconfig)
|
126 |
+
|
127 |
+
def _forward(self, input, batch_size, sample_posterior=True, **additional_decode_kwargs):
|
128 |
+
posterior, hidden_states = self.encode(input, return_hidden_states=True)
|
129 |
+
|
130 |
+
hidden_states_first_last = []
|
131 |
+
### use only the first and last hidden states
|
132 |
+
for hid in hidden_states:
|
133 |
+
hid = rearrange(hid, '(b t) c h w -> b c t h w', b=batch_size)
|
134 |
+
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
|
135 |
+
hidden_states_first_last.append(hid_new)
|
136 |
+
|
137 |
+
if sample_posterior:
|
138 |
+
z = posterior[0].sample()
|
139 |
+
else:
|
140 |
+
z = posterior[0].mode()
|
141 |
+
dec = self.decode(z, ref_context=hidden_states_first_last, **additional_decode_kwargs)
|
142 |
+
## print(input.shape, dec.shape) torch.Size([16, 3, 256, 256]) torch.Size([16, 3, 256, 256])
|
143 |
+
return dec, posterior
|
lvdm/models/condition.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision.transforms import functional as F
|
5 |
+
import open_clip
|
6 |
+
from torch.utils.checkpoint import checkpoint
|
7 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.models import ModelMixin
|
10 |
+
from ..common import autocast
|
11 |
+
from ..utils import count_params
|
12 |
+
|
13 |
+
|
14 |
+
class AbstractEncoder(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def encode(self, *args, **kwargs):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
@property
|
22 |
+
def device(self):
|
23 |
+
return next(self.parameters()).device
|
24 |
+
|
25 |
+
@property
|
26 |
+
def dtype(self):
|
27 |
+
return next(self.parameters()).dtype
|
28 |
+
|
29 |
+
class IdentityEncoder(AbstractEncoder):
|
30 |
+
def encode(self, x):
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class ClassEmbedder(nn.Module):
|
35 |
+
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
36 |
+
super().__init__()
|
37 |
+
self.key = key
|
38 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
39 |
+
self.n_classes = n_classes
|
40 |
+
self.ucg_rate = ucg_rate
|
41 |
+
|
42 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
43 |
+
if key is None:
|
44 |
+
key = self.key
|
45 |
+
# this is for use in crossattn
|
46 |
+
c = batch[key][:, None]
|
47 |
+
if self.ucg_rate > 0. and not disable_dropout:
|
48 |
+
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
49 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
50 |
+
c = c.long()
|
51 |
+
c = self.embedding(c)
|
52 |
+
return c
|
53 |
+
|
54 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
55 |
+
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
56 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
57 |
+
uc = {self.key: uc}
|
58 |
+
return uc
|
59 |
+
|
60 |
+
|
61 |
+
def disabled_train(self, mode=True):
|
62 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
63 |
+
does not change anymore."""
|
64 |
+
return self
|
65 |
+
|
66 |
+
|
67 |
+
class FrozenT5Embedder(AbstractEncoder):
|
68 |
+
"""Uses the T5 transformer encoder for text"""
|
69 |
+
|
70 |
+
def __init__(self, version="google/t5-v1_1-large", max_length=77,
|
71 |
+
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
72 |
+
super().__init__()
|
73 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
74 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
75 |
+
self.max_length = max_length # TODO: typical value?
|
76 |
+
if freeze:
|
77 |
+
self.freeze()
|
78 |
+
|
79 |
+
def freeze(self):
|
80 |
+
self.transformer = self.transformer.eval()
|
81 |
+
# self.train = disabled_train
|
82 |
+
for param in self.parameters():
|
83 |
+
param.requires_grad = False
|
84 |
+
|
85 |
+
def forward(self, text):
|
86 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
87 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
88 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
89 |
+
outputs = self.transformer(input_ids=tokens)
|
90 |
+
|
91 |
+
z = outputs.last_hidden_state
|
92 |
+
return z
|
93 |
+
|
94 |
+
def encode(self, text):
|
95 |
+
return self(text)
|
96 |
+
|
97 |
+
|
98 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
99 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
100 |
+
LAYERS = [
|
101 |
+
"last",
|
102 |
+
"pooled",
|
103 |
+
"hidden"
|
104 |
+
]
|
105 |
+
|
106 |
+
def __init__(self, version="openai/clip-vit-large-patch14", max_length=77,
|
107 |
+
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
108 |
+
super().__init__()
|
109 |
+
assert layer in self.LAYERS
|
110 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
111 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
112 |
+
self.max_length = max_length
|
113 |
+
if freeze:
|
114 |
+
self.freeze()
|
115 |
+
self.layer = layer
|
116 |
+
self.layer_idx = layer_idx
|
117 |
+
if layer == "hidden":
|
118 |
+
assert layer_idx is not None
|
119 |
+
assert 0 <= abs(layer_idx) <= 12
|
120 |
+
|
121 |
+
def freeze(self):
|
122 |
+
self.transformer = self.transformer.eval()
|
123 |
+
# self.train = disabled_train
|
124 |
+
for param in self.parameters():
|
125 |
+
param.requires_grad = False
|
126 |
+
|
127 |
+
def forward(self, text):
|
128 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
129 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
130 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
131 |
+
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
|
132 |
+
if self.layer == "last":
|
133 |
+
z = outputs.last_hidden_state
|
134 |
+
elif self.layer == "pooled":
|
135 |
+
z = outputs.pooler_output[:, None, :]
|
136 |
+
else:
|
137 |
+
z = outputs.hidden_states[self.layer_idx]
|
138 |
+
return z
|
139 |
+
|
140 |
+
def encode(self, text):
|
141 |
+
return self(text)
|
142 |
+
|
143 |
+
|
144 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
145 |
+
"""
|
146 |
+
Uses the OpenCLIP transformer encoder for text
|
147 |
+
"""
|
148 |
+
LAYERS = [
|
149 |
+
# "pooled",
|
150 |
+
"last",
|
151 |
+
"penultimate"
|
152 |
+
]
|
153 |
+
|
154 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", max_length=77,
|
155 |
+
freeze=True, layer="penultimate"):
|
156 |
+
super().__init__()
|
157 |
+
assert layer in self.LAYERS
|
158 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
159 |
+
del model.visual
|
160 |
+
self.model = model
|
161 |
+
|
162 |
+
self.max_length = max_length
|
163 |
+
if freeze:
|
164 |
+
self.freeze()
|
165 |
+
self.layer = layer
|
166 |
+
if self.layer == "last":
|
167 |
+
self.layer_idx = 0
|
168 |
+
elif self.layer == "penultimate":
|
169 |
+
self.layer_idx = 1
|
170 |
+
else:
|
171 |
+
raise NotImplementedError()
|
172 |
+
|
173 |
+
def freeze(self):
|
174 |
+
self.model = self.model.eval()
|
175 |
+
for param in self.parameters():
|
176 |
+
param.requires_grad = False
|
177 |
+
|
178 |
+
def forward(self, text):
|
179 |
+
tokens = open_clip.tokenize(text) ## all clip models use 77 as context length
|
180 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
181 |
+
return z
|
182 |
+
|
183 |
+
def encode_with_transformer(self, text):
|
184 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
185 |
+
x = x + self.model.positional_embedding
|
186 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
187 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
188 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
189 |
+
x = self.model.ln_final(x)
|
190 |
+
return x
|
191 |
+
|
192 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
193 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
194 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
195 |
+
break
|
196 |
+
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
197 |
+
x = checkpoint(r, x, attn_mask)
|
198 |
+
else:
|
199 |
+
x = r(x, attn_mask=attn_mask)
|
200 |
+
return x
|
201 |
+
|
202 |
+
def encode(self, text):
|
203 |
+
return self(text)
|
204 |
+
|
205 |
+
|
206 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
207 |
+
"""
|
208 |
+
Uses the OpenCLIP vision transformer encoder for images
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", max_length=77,
|
212 |
+
freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
|
213 |
+
super().__init__()
|
214 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
215 |
+
pretrained=version, )
|
216 |
+
del model.transformer
|
217 |
+
self.model = model
|
218 |
+
self.preprocess_val = preprocess_val
|
219 |
+
# self.mapper = torch.nn.Linear(1280, 1024)
|
220 |
+
self.max_length = max_length
|
221 |
+
if freeze:
|
222 |
+
self.freeze()
|
223 |
+
self.layer = layer
|
224 |
+
if self.layer == "penultimate":
|
225 |
+
raise NotImplementedError()
|
226 |
+
self.layer_idx = 1
|
227 |
+
|
228 |
+
self.antialias = antialias
|
229 |
+
|
230 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
231 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
232 |
+
self.ucg_rate = ucg_rate
|
233 |
+
|
234 |
+
def preprocess(self, x):
|
235 |
+
# normalize to [0,1]
|
236 |
+
x = F.resize(x, (224, 224), interpolation=F.InterpolationMode.BICUBIC, antialias=self.antialias)
|
237 |
+
x = (x + 1.) / 2.
|
238 |
+
# renormalize according to clip
|
239 |
+
x = F.normalize(x, mean=self.mean, std=self.std)
|
240 |
+
return x
|
241 |
+
|
242 |
+
def freeze(self):
|
243 |
+
self.model = self.model.eval()
|
244 |
+
for param in self.model.parameters():
|
245 |
+
param.requires_grad = False
|
246 |
+
|
247 |
+
@autocast
|
248 |
+
def forward(self, image, no_dropout=False):
|
249 |
+
z = self.encode_with_vision_transformer(image)
|
250 |
+
if self.ucg_rate > 0. and not no_dropout:
|
251 |
+
z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
|
252 |
+
return z
|
253 |
+
|
254 |
+
def encode_with_vision_transformer(self, img):
|
255 |
+
img = self.preprocess(img)
|
256 |
+
x = self.model.visual(img)
|
257 |
+
return x
|
258 |
+
|
259 |
+
def encode(self, text):
|
260 |
+
return self(text)
|
261 |
+
|
262 |
+
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
|
263 |
+
"""
|
264 |
+
Uses the OpenCLIP vision transformer encoder for images
|
265 |
+
"""
|
266 |
+
|
267 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k",
|
268 |
+
freeze=True, layer="pooled", antialias=True):
|
269 |
+
super().__init__()
|
270 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
271 |
+
pretrained=version, )
|
272 |
+
del model.transformer
|
273 |
+
self.model = model
|
274 |
+
self.preprocess_val = preprocess_val
|
275 |
+
|
276 |
+
if freeze:
|
277 |
+
self.freeze()
|
278 |
+
self.layer = layer
|
279 |
+
if self.layer == "penultimate":
|
280 |
+
raise NotImplementedError()
|
281 |
+
self.layer_idx = 1
|
282 |
+
|
283 |
+
self.antialias = antialias
|
284 |
+
|
285 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
286 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
287 |
+
|
288 |
+
|
289 |
+
def preprocess(self, x):
|
290 |
+
# normalize to [0,1]
|
291 |
+
x = F.resize(x, (224, 224), interpolation=F.InterpolationMode.BICUBIC, antialias=self.antialias)
|
292 |
+
x = (x + 1.) / 2.
|
293 |
+
# renormalize according to clip
|
294 |
+
x = F.normalize(x, mean=self.mean, std=self.std)
|
295 |
+
return x
|
296 |
+
|
297 |
+
def freeze(self):
|
298 |
+
self.model = self.model.eval()
|
299 |
+
for param in self.model.parameters():
|
300 |
+
param.requires_grad = False
|
301 |
+
|
302 |
+
def forward(self, image, no_dropout=False):
|
303 |
+
## image: b c h w
|
304 |
+
z = self.encode_with_vision_transformer(image)
|
305 |
+
return z
|
306 |
+
|
307 |
+
def encode_with_vision_transformer(self, x):
|
308 |
+
x = self.preprocess(x)
|
309 |
+
|
310 |
+
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
|
311 |
+
if self.model.visual.input_patchnorm:
|
312 |
+
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
|
313 |
+
x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
|
314 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
315 |
+
x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
|
316 |
+
x = self.model.visual.patchnorm_pre_ln(x)
|
317 |
+
x = self.model.visual.conv1(x)
|
318 |
+
else:
|
319 |
+
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
|
320 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
321 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
322 |
+
|
323 |
+
# class embeddings and positional embeddings
|
324 |
+
x = torch.cat(
|
325 |
+
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
326 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
327 |
+
x = x + self.model.visual.positional_embedding.to(x.dtype)
|
328 |
+
|
329 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
330 |
+
x = self.model.visual.patch_dropout(x)
|
331 |
+
x = self.model.visual.ln_pre(x)
|
332 |
+
|
333 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
334 |
+
x = self.model.visual.transformer(x)
|
335 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
340 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl",
|
341 |
+
clip_max_length=77, t5_max_length=77):
|
342 |
+
super().__init__()
|
343 |
+
self.clip_encoder = FrozenCLIPEmbedder(clip_version, max_length=clip_max_length)
|
344 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, max_length=t5_max_length)
|
345 |
+
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
346 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
|
347 |
+
|
348 |
+
def encode(self, text):
|
349 |
+
return self(text)
|
350 |
+
|
351 |
+
def forward(self, text):
|
352 |
+
clip_z = self.clip_encoder.encode(text)
|
353 |
+
t5_z = self.t5_encoder.encode(text)
|
354 |
+
return [clip_z, t5_z]
|
355 |
+
|
356 |
+
|
357 |
+
# FFN
|
358 |
+
def FeedForward(dim, mult=4):
|
359 |
+
inner_dim = int(dim * mult)
|
360 |
+
return nn.Sequential(
|
361 |
+
nn.LayerNorm(dim),
|
362 |
+
nn.Linear(dim, inner_dim, bias=False),
|
363 |
+
nn.GELU(),
|
364 |
+
nn.Linear(inner_dim, dim, bias=False),
|
365 |
+
)
|
366 |
+
|
367 |
+
|
368 |
+
def reshape_tensor(x, heads):
|
369 |
+
bs, length, width = x.shape
|
370 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
371 |
+
x = x.view(bs, length, heads, -1)
|
372 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
373 |
+
x = x.transpose(1, 2)
|
374 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
375 |
+
x = x.reshape(bs, heads, length, -1)
|
376 |
+
return x
|
377 |
+
|
378 |
+
|
379 |
+
class PerceiverAttention(nn.Module):
|
380 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
381 |
+
super().__init__()
|
382 |
+
self.scale = dim_head**-0.5
|
383 |
+
self.dim_head = dim_head
|
384 |
+
self.heads = heads
|
385 |
+
inner_dim = dim_head * heads
|
386 |
+
|
387 |
+
self.norm1 = nn.LayerNorm(dim)
|
388 |
+
self.norm2 = nn.LayerNorm(dim)
|
389 |
+
|
390 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
391 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
392 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
393 |
+
|
394 |
+
|
395 |
+
def forward(self, x, latents):
|
396 |
+
"""
|
397 |
+
Args:
|
398 |
+
x (torch.Tensor): image features
|
399 |
+
shape (b, n1, D)
|
400 |
+
latent (torch.Tensor): latent features
|
401 |
+
shape (b, n2, D)
|
402 |
+
"""
|
403 |
+
x = self.norm1(x)
|
404 |
+
latents = self.norm2(latents)
|
405 |
+
|
406 |
+
b, l, _ = latents.shape
|
407 |
+
|
408 |
+
q = self.to_q(latents)
|
409 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
410 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
411 |
+
|
412 |
+
q = reshape_tensor(q, self.heads)
|
413 |
+
k = reshape_tensor(k, self.heads)
|
414 |
+
v = reshape_tensor(v, self.heads)
|
415 |
+
|
416 |
+
# attention
|
417 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
418 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
419 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
420 |
+
out = weight @ v
|
421 |
+
|
422 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
423 |
+
|
424 |
+
return self.to_out(out)
|
425 |
+
|
426 |
+
|
427 |
+
class Resampler(ModelMixin, ConfigMixin):
|
428 |
+
@register_to_config
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
dim=1024,
|
432 |
+
depth=8,
|
433 |
+
dim_head=64,
|
434 |
+
heads=16,
|
435 |
+
num_queries=8,
|
436 |
+
embedding_dim=768,
|
437 |
+
output_dim=1024,
|
438 |
+
ff_mult=4,
|
439 |
+
video_length=None, # using frame-wise version or not
|
440 |
+
):
|
441 |
+
super().__init__()
|
442 |
+
## queries for a single frame / image
|
443 |
+
self.num_queries = num_queries
|
444 |
+
self.video_length = video_length
|
445 |
+
|
446 |
+
## <num_queries> queries for each frame
|
447 |
+
if video_length is not None:
|
448 |
+
num_queries = num_queries * video_length
|
449 |
+
|
450 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
451 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
452 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
453 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
454 |
+
|
455 |
+
self.layers = nn.ModuleList([])
|
456 |
+
for _ in range(depth):
|
457 |
+
self.layers.append(
|
458 |
+
nn.ModuleList(
|
459 |
+
[
|
460 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
461 |
+
FeedForward(dim=dim, mult=ff_mult),
|
462 |
+
]
|
463 |
+
)
|
464 |
+
)
|
465 |
+
|
466 |
+
def forward(self, x):
|
467 |
+
latents = self.latents.repeat(x.size(0), 1, 1) ## B (T L) C
|
468 |
+
x = self.proj_in(x)
|
469 |
+
|
470 |
+
for attn, ff in self.layers:
|
471 |
+
latents = attn(x, latents) + latents
|
472 |
+
latents = ff(latents) + latents
|
473 |
+
|
474 |
+
latents = self.proj_out(latents)
|
475 |
+
latents = self.norm_out(latents) # B L C or B (T L) C
|
476 |
+
|
477 |
+
return latents
|
lvdm/models/controlnet.py
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
from einops import rearrange, repeat
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock
|
9 |
+
from ..basics import zero_module, conv_nd
|
10 |
+
from ..modules.attention import SpatialTransformer, TemporalTransformer
|
11 |
+
from ..common import checkpoint
|
12 |
+
|
13 |
+
from diffusers import __version__
|
14 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
18 |
+
from diffusers.utils import (
|
19 |
+
SAFETENSORS_WEIGHTS_NAME,
|
20 |
+
WEIGHTS_NAME,
|
21 |
+
logging,
|
22 |
+
_get_model_file,
|
23 |
+
_add_variant
|
24 |
+
)
|
25 |
+
from omegaconf import ListConfig, DictConfig, OmegaConf
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
class ResBlock_v2(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
channels,
|
35 |
+
emb_channels,
|
36 |
+
dropout,
|
37 |
+
out_channels=None,
|
38 |
+
dims=2,
|
39 |
+
use_checkpoint=False,
|
40 |
+
use_conv=False,
|
41 |
+
up=False,
|
42 |
+
down=False,
|
43 |
+
use_temporal_conv=False,
|
44 |
+
tempspatial_aware=False
|
45 |
+
):
|
46 |
+
super().__init__()
|
47 |
+
self.channels = channels
|
48 |
+
self.emb_channels = emb_channels
|
49 |
+
self.dropout = dropout
|
50 |
+
self.out_channels = out_channels or channels
|
51 |
+
self.use_conv = use_conv
|
52 |
+
self.use_checkpoint = use_checkpoint
|
53 |
+
self.use_temporal_conv = use_temporal_conv
|
54 |
+
|
55 |
+
self.in_layers = nn.Sequential(
|
56 |
+
nn.GroupNorm(32, channels),
|
57 |
+
nn.SiLU(),
|
58 |
+
zero_module(conv_nd(dims, channels, self.out_channels, 3, padding=1)),
|
59 |
+
)
|
60 |
+
|
61 |
+
self.updown = up or down
|
62 |
+
|
63 |
+
if up:
|
64 |
+
self.h_upd = Upsample(channels, False, dims)
|
65 |
+
self.x_upd = Upsample(channels, False, dims)
|
66 |
+
elif down:
|
67 |
+
self.h_upd = Downsample(channels, False, dims)
|
68 |
+
self.x_upd = Downsample(channels, False, dims)
|
69 |
+
else:
|
70 |
+
self.h_upd = self.x_upd = nn.Identity()
|
71 |
+
|
72 |
+
if self.out_channels == channels:
|
73 |
+
self.skip_connection = nn.Identity()
|
74 |
+
elif use_conv:
|
75 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
76 |
+
else:
|
77 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
78 |
+
|
79 |
+
if self.use_temporal_conv:
|
80 |
+
self.temopral_conv = TemporalConvBlock(
|
81 |
+
self.out_channels,
|
82 |
+
self.out_channels,
|
83 |
+
dropout=0.1,
|
84 |
+
spatial_aware=tempspatial_aware
|
85 |
+
)
|
86 |
+
|
87 |
+
def forward(self, x, batch_size=None):
|
88 |
+
"""
|
89 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
90 |
+
:param x: an [N x C x ...] Tensor of features.
|
91 |
+
:return: an [N x C x ...] Tensor of outputs.
|
92 |
+
"""
|
93 |
+
input_tuple = (x, )
|
94 |
+
if batch_size:
|
95 |
+
forward_batchsize = partial(self._forward, batch_size=batch_size)
|
96 |
+
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
|
97 |
+
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
|
98 |
+
|
99 |
+
def _forward(self, x, batch_size=None):
|
100 |
+
if self.updown:
|
101 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
102 |
+
h = in_rest(x)
|
103 |
+
h = self.h_upd(h)
|
104 |
+
x = self.x_upd(x)
|
105 |
+
h = in_conv(h)
|
106 |
+
else:
|
107 |
+
h = self.in_layers(x)
|
108 |
+
h = self.skip_connection(x) + h
|
109 |
+
|
110 |
+
if self.use_temporal_conv and batch_size:
|
111 |
+
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
|
112 |
+
h = self.temopral_conv(h)
|
113 |
+
h = rearrange(h, 'b c t h w -> (b t) c h w')
|
114 |
+
return h
|
115 |
+
|
116 |
+
|
117 |
+
class TrajectoryEncoder(nn.Module):
|
118 |
+
def __init__(self, cin, time_embed_dim, channels=[320, 640, 1280, 1280], nums_rb=3,
|
119 |
+
dropout=0.0, use_checkpoint=False, tempspatial_aware=False, temporal_conv=False):
|
120 |
+
super(TrajectoryEncoder, self).__init__()
|
121 |
+
# self.unshuffle = nn.PixelUnshuffle(8)
|
122 |
+
self.channels = channels
|
123 |
+
self.nums_rb = nums_rb
|
124 |
+
self.body = []
|
125 |
+
# self.conv_out = []
|
126 |
+
for i in range(len(channels)):
|
127 |
+
for j in range(nums_rb):
|
128 |
+
if (i != 0) and (j == 0):
|
129 |
+
self.body.append(
|
130 |
+
ResBlock_v2(channels[i - 1], time_embed_dim, dropout,
|
131 |
+
out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint,
|
132 |
+
tempspatial_aware=tempspatial_aware,
|
133 |
+
use_temporal_conv=temporal_conv,
|
134 |
+
down=True
|
135 |
+
)
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
self.body.append(
|
139 |
+
ResBlock_v2(channels[i], time_embed_dim, dropout,
|
140 |
+
out_channels=channels[i], dims=2, use_checkpoint=use_checkpoint,
|
141 |
+
tempspatial_aware=tempspatial_aware,
|
142 |
+
use_temporal_conv=temporal_conv,
|
143 |
+
down=False
|
144 |
+
)
|
145 |
+
)
|
146 |
+
self.body.append(
|
147 |
+
ResBlock_v2(channels[-1], time_embed_dim, dropout,
|
148 |
+
out_channels=channels[-1], dims=2, use_checkpoint=use_checkpoint,
|
149 |
+
tempspatial_aware=tempspatial_aware,
|
150 |
+
use_temporal_conv=temporal_conv,
|
151 |
+
down=True
|
152 |
+
)
|
153 |
+
)
|
154 |
+
self.body = nn.ModuleList(self.body)
|
155 |
+
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
|
156 |
+
self.conv_out = zero_module(conv_nd(2, channels[-1], channels[-1], 3, 1, 1))
|
157 |
+
|
158 |
+
def forward(self, x, batch_size=None):
|
159 |
+
# unshuffle
|
160 |
+
# x = self.unshuffle(x)
|
161 |
+
# extract features
|
162 |
+
# features = []
|
163 |
+
x = self.conv_in(x)
|
164 |
+
for i in range(len(self.channels)):
|
165 |
+
for j in range(self.nums_rb):
|
166 |
+
idx = i * self.nums_rb + j
|
167 |
+
x = self.body[idx](x, batch_size)
|
168 |
+
x = self.body[-1](x, batch_size)
|
169 |
+
out = self.conv_out(x)
|
170 |
+
return out
|
171 |
+
|
172 |
+
|
173 |
+
class ControlNet(ModelMixin, ConfigMixin):
|
174 |
+
_supports_gradient_checkpointing = True
|
175 |
+
|
176 |
+
@register_to_config
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
in_channels,
|
180 |
+
model_channels,
|
181 |
+
out_channels,
|
182 |
+
num_res_blocks,
|
183 |
+
attention_resolutions,
|
184 |
+
dropout=0.0,
|
185 |
+
channel_mult=(1, 2, 4, 8),
|
186 |
+
conv_resample=True,
|
187 |
+
dims=2,
|
188 |
+
context_dim=None,
|
189 |
+
use_scale_shift_norm=False,
|
190 |
+
resblock_updown=False,
|
191 |
+
num_heads=-1,
|
192 |
+
num_head_channels=-1,
|
193 |
+
transformer_depth=1,
|
194 |
+
use_linear=False,
|
195 |
+
use_checkpoint=False,
|
196 |
+
temporal_conv=False,
|
197 |
+
tempspatial_aware=False,
|
198 |
+
temporal_attention=True,
|
199 |
+
use_relative_position=True,
|
200 |
+
use_causal_attention=False,
|
201 |
+
temporal_length=None,
|
202 |
+
addition_attention=False,
|
203 |
+
temporal_selfatt_only=True,
|
204 |
+
image_cross_attention=False,
|
205 |
+
image_cross_attention_scale_learnable=False,
|
206 |
+
default_fps=4,
|
207 |
+
fps_condition=False,
|
208 |
+
ignore_noisy_latents=True,
|
209 |
+
conditioning_channels=4,
|
210 |
+
):
|
211 |
+
super().__init__()
|
212 |
+
if num_heads == -1:
|
213 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
214 |
+
if num_head_channels == -1:
|
215 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
216 |
+
|
217 |
+
self.in_channels = in_channels
|
218 |
+
self.model_channels = model_channels
|
219 |
+
self.out_channels = out_channels
|
220 |
+
self.num_res_blocks = num_res_blocks
|
221 |
+
self.attention_resolutions = attention_resolutions
|
222 |
+
self.dropout = dropout
|
223 |
+
self.channel_mult = channel_mult
|
224 |
+
self.conv_resample = conv_resample
|
225 |
+
self.temporal_attention = temporal_attention
|
226 |
+
time_embed_dim = model_channels * 4
|
227 |
+
self.use_checkpoint = use_checkpoint
|
228 |
+
temporal_self_att_only = True
|
229 |
+
self.addition_attention = addition_attention
|
230 |
+
self.temporal_length = temporal_length
|
231 |
+
self.image_cross_attention = image_cross_attention
|
232 |
+
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
|
233 |
+
self.default_fps = default_fps
|
234 |
+
self.fps_condition = fps_condition
|
235 |
+
self.ignore_noisy_latents = ignore_noisy_latents
|
236 |
+
|
237 |
+
## Time embedding blocks
|
238 |
+
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
239 |
+
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim)
|
240 |
+
|
241 |
+
if fps_condition:
|
242 |
+
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim)
|
243 |
+
nn.init.zeros_(self.fps_embedding.linear_2.weight)
|
244 |
+
nn.init.zeros_(self.fps_embedding.linear_2.bias)
|
245 |
+
|
246 |
+
# self.cond_embedding = TrajectoryEncoder(
|
247 |
+
# cin=conditioning_channels, time_embed_dim=time_embed_dim, channels=trajectory_channels, nums_rb=3,
|
248 |
+
# dropout=dropout, use_checkpoint=use_checkpoint, tempspatial_aware=tempspatial_aware, temporal_conv=False
|
249 |
+
# )
|
250 |
+
self.cond_embedding = zero_module(conv_nd(dims, conditioning_channels, model_channels, 3, padding=1))
|
251 |
+
self.input_blocks = nn.ModuleList(
|
252 |
+
[
|
253 |
+
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
254 |
+
]
|
255 |
+
)
|
256 |
+
|
257 |
+
## Output Block
|
258 |
+
self.downsample_output = nn.ModuleList(
|
259 |
+
[
|
260 |
+
nn.Sequential(
|
261 |
+
nn.GroupNorm(32, model_channels),
|
262 |
+
nn.SiLU(),
|
263 |
+
zero_module(conv_nd(dims, model_channels, model_channels, 3, padding=1))
|
264 |
+
)
|
265 |
+
]
|
266 |
+
)
|
267 |
+
|
268 |
+
if self.addition_attention:
|
269 |
+
self.init_attn = TimestepEmbedSequential(
|
270 |
+
TemporalTransformer(
|
271 |
+
model_channels,
|
272 |
+
n_heads=8,
|
273 |
+
d_head=num_head_channels,
|
274 |
+
depth=transformer_depth,
|
275 |
+
context_dim=context_dim,
|
276 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
277 |
+
causal_attention=False, relative_position=use_relative_position,
|
278 |
+
temporal_length=temporal_length
|
279 |
+
)
|
280 |
+
)
|
281 |
+
|
282 |
+
ch = model_channels
|
283 |
+
ds = 1
|
284 |
+
for level, mult in enumerate(channel_mult):
|
285 |
+
for _ in range(num_res_blocks):
|
286 |
+
layers = [
|
287 |
+
ResBlock(ch, time_embed_dim, dropout,
|
288 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
289 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
290 |
+
use_temporal_conv=temporal_conv
|
291 |
+
)
|
292 |
+
]
|
293 |
+
ch = mult * model_channels
|
294 |
+
if ds in attention_resolutions:
|
295 |
+
if num_head_channels == -1:
|
296 |
+
dim_head = ch // num_heads
|
297 |
+
else:
|
298 |
+
num_heads = ch // num_head_channels
|
299 |
+
dim_head = num_head_channels
|
300 |
+
layers.append(
|
301 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
302 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
303 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
304 |
+
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
|
305 |
+
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
|
306 |
+
)
|
307 |
+
)
|
308 |
+
if self.temporal_attention:
|
309 |
+
layers.append(
|
310 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
311 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
312 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
|
313 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
314 |
+
temporal_length=temporal_length
|
315 |
+
)
|
316 |
+
)
|
317 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
318 |
+
self.downsample_output.append(
|
319 |
+
nn.Sequential(
|
320 |
+
nn.GroupNorm(32, ch),
|
321 |
+
nn.SiLU(),
|
322 |
+
zero_module(conv_nd(dims, ch, ch, 3, padding=1))
|
323 |
+
)
|
324 |
+
)
|
325 |
+
if level < len(channel_mult) - 1:
|
326 |
+
out_ch = ch
|
327 |
+
self.input_blocks.append(
|
328 |
+
TimestepEmbedSequential(
|
329 |
+
ResBlock(ch, time_embed_dim, dropout,
|
330 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
331 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
332 |
+
down=True
|
333 |
+
)
|
334 |
+
if resblock_updown
|
335 |
+
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
336 |
+
)
|
337 |
+
)
|
338 |
+
self.downsample_output.append(
|
339 |
+
nn.Sequential(
|
340 |
+
nn.GroupNorm(32, out_ch),
|
341 |
+
nn.SiLU(),
|
342 |
+
zero_module(conv_nd(dims, out_ch, out_ch, 3, padding=1))
|
343 |
+
)
|
344 |
+
)
|
345 |
+
ch = out_ch
|
346 |
+
ds *= 2
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
noisy_latents,
|
351 |
+
timesteps,
|
352 |
+
context_text,
|
353 |
+
context_img=None,
|
354 |
+
fps=None,
|
355 |
+
condition=None, # [b, t, c, h, w]
|
356 |
+
):
|
357 |
+
if self.ignore_noisy_latents:
|
358 |
+
noisy_latents = torch.zeros_like(noisy_latents)
|
359 |
+
|
360 |
+
b, _, t, height, width = noisy_latents.shape
|
361 |
+
t_emb = self.time_proj(timesteps).type(noisy_latents.dtype)
|
362 |
+
emb = self.time_embed(t_emb)
|
363 |
+
|
364 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
365 |
+
## check if we use per-frame image conditioning
|
366 |
+
if context_img is not None: ## decompose context into text and image
|
367 |
+
context_text = context_text.repeat_interleave(repeats=t, dim=0)
|
368 |
+
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
|
369 |
+
context = torch.cat([context_text, context_img], dim=1)
|
370 |
+
else:
|
371 |
+
context = context_text.repeat_interleave(repeats=t, dim=0)
|
372 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
373 |
+
|
374 |
+
## always in shape (b n t) c h w, except for temporal layer
|
375 |
+
noisy_latents = rearrange(noisy_latents, 'b c t h w -> (b t) c h w')
|
376 |
+
condition = rearrange(condition, 'b t c h w -> (b t) c h w')
|
377 |
+
|
378 |
+
## combine emb
|
379 |
+
if self.fps_condition:
|
380 |
+
if fps is None:
|
381 |
+
fps = torch.tensor(
|
382 |
+
[self.default_fs] * b, dtype=torch.long, device=noisy_latents.device)
|
383 |
+
fps_emb = self.time_proj(fps).type(noisy_latents.dtype)
|
384 |
+
|
385 |
+
fps_embed = self.fps_embedding(fps_emb)
|
386 |
+
fps_embed = fps_embed.repeat_interleave(repeats=t, dim=0)
|
387 |
+
emb = emb + fps_embed
|
388 |
+
|
389 |
+
h = noisy_latents.type(self.dtype)
|
390 |
+
hs = []
|
391 |
+
for id, module in enumerate(self.input_blocks):
|
392 |
+
h = module(h, emb, context=context, batch_size=b)
|
393 |
+
if id == 0:
|
394 |
+
h = h + self.cond_embedding(condition)
|
395 |
+
if self.addition_attention:
|
396 |
+
h = self.init_attn(h, emb, context=context, batch_size=b)
|
397 |
+
hs.append(h)
|
398 |
+
|
399 |
+
guidance_feature_list = []
|
400 |
+
for hidden, module in zip(hs, self.downsample_output):
|
401 |
+
h = module(hidden)
|
402 |
+
guidance_feature_list.append(h)
|
403 |
+
|
404 |
+
return guidance_feature_list
|
405 |
+
|
406 |
+
@classmethod
|
407 |
+
def from_pretrained(cls, pretrained_model_name_or_path, layer_encoder_additional_kwargs={}, **kwargs):
|
408 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
409 |
+
force_download = kwargs.pop("force_download", False)
|
410 |
+
proxies = kwargs.pop("proxies", None)
|
411 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
412 |
+
token = kwargs.pop("token", None)
|
413 |
+
revision = kwargs.pop("revision", None)
|
414 |
+
subfolder = kwargs.pop("subfolder", None)
|
415 |
+
variant = kwargs.pop("variant", None)
|
416 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
417 |
+
|
418 |
+
allow_pickle = False
|
419 |
+
if use_safetensors is None:
|
420 |
+
use_safetensors = True
|
421 |
+
allow_pickle = True
|
422 |
+
|
423 |
+
# Load config if we don't provide a configuration
|
424 |
+
config_path = pretrained_model_name_or_path
|
425 |
+
|
426 |
+
user_agent = {
|
427 |
+
"diffusers": __version__,
|
428 |
+
"file_type": "model",
|
429 |
+
"framework": "pytorch",
|
430 |
+
}
|
431 |
+
|
432 |
+
# load config
|
433 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
434 |
+
config_path,
|
435 |
+
cache_dir=cache_dir,
|
436 |
+
return_unused_kwargs=True,
|
437 |
+
return_commit_hash=True,
|
438 |
+
force_download=force_download,
|
439 |
+
proxies=proxies,
|
440 |
+
local_files_only=local_files_only,
|
441 |
+
token=token,
|
442 |
+
revision=revision,
|
443 |
+
subfolder=subfolder,
|
444 |
+
user_agent=user_agent,
|
445 |
+
**kwargs,
|
446 |
+
)
|
447 |
+
|
448 |
+
for key, value in layer_encoder_additional_kwargs.items():
|
449 |
+
if isinstance(value, (ListConfig, DictConfig)):
|
450 |
+
config[key] = OmegaConf.to_container(value, resolve=True)
|
451 |
+
else:
|
452 |
+
config[key] = value
|
453 |
+
|
454 |
+
# load model
|
455 |
+
model_file = None
|
456 |
+
if use_safetensors:
|
457 |
+
try:
|
458 |
+
model_file = _get_model_file(
|
459 |
+
pretrained_model_name_or_path,
|
460 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
461 |
+
cache_dir=cache_dir,
|
462 |
+
force_download=force_download,
|
463 |
+
proxies=proxies,
|
464 |
+
local_files_only=local_files_only,
|
465 |
+
token=token,
|
466 |
+
revision=revision,
|
467 |
+
subfolder=subfolder,
|
468 |
+
user_agent=user_agent,
|
469 |
+
commit_hash=commit_hash,
|
470 |
+
)
|
471 |
+
|
472 |
+
except IOError as e:
|
473 |
+
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
|
474 |
+
if not allow_pickle:
|
475 |
+
raise
|
476 |
+
logger.warning(
|
477 |
+
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
|
478 |
+
)
|
479 |
+
|
480 |
+
if model_file is None:
|
481 |
+
model_file = _get_model_file(
|
482 |
+
pretrained_model_name_or_path,
|
483 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
484 |
+
cache_dir=cache_dir,
|
485 |
+
force_download=force_download,
|
486 |
+
proxies=proxies,
|
487 |
+
local_files_only=local_files_only,
|
488 |
+
token=token,
|
489 |
+
revision=revision,
|
490 |
+
subfolder=subfolder,
|
491 |
+
user_agent=user_agent,
|
492 |
+
commit_hash=commit_hash,
|
493 |
+
)
|
494 |
+
|
495 |
+
model = cls.from_config(config, **unused_kwargs)
|
496 |
+
state_dict = load_state_dict(model_file, variant)
|
497 |
+
|
498 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
499 |
+
print(f"Controlnet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.")
|
500 |
+
return model
|
lvdm/models/layer_controlnet.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
from einops import rearrange, repeat
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock
|
9 |
+
from ..basics import zero_module, conv_nd
|
10 |
+
from ..modules.attention import SpatialTransformer, TemporalTransformer
|
11 |
+
from ..common import checkpoint
|
12 |
+
|
13 |
+
from diffusers import __version__
|
14 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
18 |
+
from diffusers.utils import (
|
19 |
+
SAFETENSORS_WEIGHTS_NAME,
|
20 |
+
WEIGHTS_NAME,
|
21 |
+
logging,
|
22 |
+
_get_model_file,
|
23 |
+
_add_variant
|
24 |
+
)
|
25 |
+
from omegaconf import ListConfig, DictConfig, OmegaConf
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
32 |
+
"""
|
33 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
34 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
35 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
36 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
37 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
38 |
+
model) to encode image-space conditions ... into feature maps ..."
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
conditioning_embedding_channels: int,
|
44 |
+
conditioning_channels: int = 3,
|
45 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
50 |
+
|
51 |
+
self.blocks = nn.ModuleList([])
|
52 |
+
|
53 |
+
for i in range(len(block_out_channels) - 1):
|
54 |
+
channel_in = block_out_channels[i]
|
55 |
+
channel_out = block_out_channels[i + 1]
|
56 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
57 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
58 |
+
|
59 |
+
self.conv_out = zero_module(
|
60 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, conditioning):
|
64 |
+
embedding = self.conv_in(conditioning)
|
65 |
+
embedding = F.silu(embedding)
|
66 |
+
|
67 |
+
for block in self.blocks:
|
68 |
+
embedding = block(embedding)
|
69 |
+
embedding = F.silu(embedding)
|
70 |
+
|
71 |
+
embedding = self.conv_out(embedding)
|
72 |
+
|
73 |
+
return embedding
|
74 |
+
|
75 |
+
|
76 |
+
class LayerControlNet(ModelMixin, ConfigMixin):
|
77 |
+
_supports_gradient_checkpointing = True
|
78 |
+
|
79 |
+
@register_to_config
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
in_channels,
|
83 |
+
model_channels,
|
84 |
+
out_channels,
|
85 |
+
num_res_blocks,
|
86 |
+
attention_resolutions,
|
87 |
+
dropout=0.0,
|
88 |
+
channel_mult=(1, 2, 4, 8),
|
89 |
+
conv_resample=True,
|
90 |
+
dims=2,
|
91 |
+
context_dim=None,
|
92 |
+
use_scale_shift_norm=False,
|
93 |
+
resblock_updown=False,
|
94 |
+
num_heads=-1,
|
95 |
+
num_head_channels=-1,
|
96 |
+
transformer_depth=1,
|
97 |
+
use_linear=False,
|
98 |
+
use_checkpoint=False,
|
99 |
+
temporal_conv=False,
|
100 |
+
tempspatial_aware=False,
|
101 |
+
temporal_attention=True,
|
102 |
+
use_relative_position=True,
|
103 |
+
use_causal_attention=False,
|
104 |
+
temporal_length=None,
|
105 |
+
addition_attention=False,
|
106 |
+
temporal_selfatt_only=True,
|
107 |
+
image_cross_attention=False,
|
108 |
+
image_cross_attention_scale_learnable=False,
|
109 |
+
default_fps=4,
|
110 |
+
fps_condition=False,
|
111 |
+
ignore_noisy_latents=True,
|
112 |
+
condition_channels={},
|
113 |
+
control_injection_mode='add',
|
114 |
+
use_vae_for_trajectory=False,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
if num_heads == -1:
|
118 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
119 |
+
if num_head_channels == -1:
|
120 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
121 |
+
|
122 |
+
self.in_channels = in_channels
|
123 |
+
self.model_channels = model_channels
|
124 |
+
self.out_channels = out_channels
|
125 |
+
self.num_res_blocks = num_res_blocks
|
126 |
+
self.attention_resolutions = attention_resolutions
|
127 |
+
self.dropout = dropout
|
128 |
+
self.channel_mult = channel_mult
|
129 |
+
self.conv_resample = conv_resample
|
130 |
+
self.temporal_attention = temporal_attention
|
131 |
+
time_embed_dim = model_channels * 4
|
132 |
+
self.use_checkpoint = use_checkpoint
|
133 |
+
temporal_self_att_only = True
|
134 |
+
self.addition_attention = addition_attention
|
135 |
+
self.temporal_length = temporal_length
|
136 |
+
self.image_cross_attention = image_cross_attention
|
137 |
+
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
|
138 |
+
self.default_fps = default_fps
|
139 |
+
self.fps_condition = fps_condition
|
140 |
+
self.ignore_noisy_latents = ignore_noisy_latents
|
141 |
+
assert len(condition_channels) > 0, 'Condition types must be specified'
|
142 |
+
self.condition_channels = condition_channels
|
143 |
+
self.control_injection_mode = control_injection_mode
|
144 |
+
self.use_vae_for_trajectory = use_vae_for_trajectory
|
145 |
+
|
146 |
+
## Time embedding blocks
|
147 |
+
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
148 |
+
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim)
|
149 |
+
|
150 |
+
if fps_condition:
|
151 |
+
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim)
|
152 |
+
nn.init.zeros_(self.fps_embedding.linear_2.weight)
|
153 |
+
nn.init.zeros_(self.fps_embedding.linear_2.bias)
|
154 |
+
|
155 |
+
if "motion_score" in condition_channels:
|
156 |
+
if control_injection_mode == 'add':
|
157 |
+
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1))
|
158 |
+
elif control_injection_mode == 'concat':
|
159 |
+
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1))
|
160 |
+
else:
|
161 |
+
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
|
162 |
+
if "sketch" in condition_channels:
|
163 |
+
if control_injection_mode == 'add':
|
164 |
+
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1))
|
165 |
+
elif control_injection_mode == 'concat':
|
166 |
+
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1))
|
167 |
+
else:
|
168 |
+
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
|
169 |
+
if "trajectory" in condition_channels:
|
170 |
+
if control_injection_mode == 'add':
|
171 |
+
if use_vae_for_trajectory:
|
172 |
+
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1))
|
173 |
+
else:
|
174 |
+
self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"])
|
175 |
+
elif control_injection_mode == 'concat':
|
176 |
+
if use_vae_for_trajectory:
|
177 |
+
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1))
|
178 |
+
else:
|
179 |
+
self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"])
|
180 |
+
else:
|
181 |
+
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
|
182 |
+
|
183 |
+
self.input_blocks = nn.ModuleList(
|
184 |
+
[
|
185 |
+
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
186 |
+
]
|
187 |
+
)
|
188 |
+
|
189 |
+
if self.addition_attention:
|
190 |
+
self.init_attn = TimestepEmbedSequential(
|
191 |
+
TemporalTransformer(
|
192 |
+
model_channels,
|
193 |
+
n_heads=8,
|
194 |
+
d_head=num_head_channels,
|
195 |
+
depth=transformer_depth,
|
196 |
+
context_dim=context_dim,
|
197 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
198 |
+
causal_attention=False, relative_position=use_relative_position,
|
199 |
+
temporal_length=temporal_length
|
200 |
+
)
|
201 |
+
)
|
202 |
+
|
203 |
+
ch = model_channels
|
204 |
+
ds = 1
|
205 |
+
for level, mult in enumerate(channel_mult):
|
206 |
+
for _ in range(num_res_blocks):
|
207 |
+
layers = [
|
208 |
+
ResBlock(ch, time_embed_dim, dropout,
|
209 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
210 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
211 |
+
use_temporal_conv=temporal_conv
|
212 |
+
)
|
213 |
+
]
|
214 |
+
ch = mult * model_channels
|
215 |
+
if ds in attention_resolutions:
|
216 |
+
if num_head_channels == -1:
|
217 |
+
dim_head = ch // num_heads
|
218 |
+
else:
|
219 |
+
num_heads = ch // num_head_channels
|
220 |
+
dim_head = num_head_channels
|
221 |
+
layers.append(
|
222 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
223 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
224 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
225 |
+
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
|
226 |
+
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
|
227 |
+
)
|
228 |
+
)
|
229 |
+
if self.temporal_attention:
|
230 |
+
layers.append(
|
231 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
232 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
233 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
|
234 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
235 |
+
temporal_length=temporal_length
|
236 |
+
)
|
237 |
+
)
|
238 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
239 |
+
|
240 |
+
if level < len(channel_mult) - 1:
|
241 |
+
out_ch = ch
|
242 |
+
self.input_blocks.append(
|
243 |
+
TimestepEmbedSequential(
|
244 |
+
ResBlock(ch, time_embed_dim, dropout,
|
245 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
246 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
247 |
+
down=True
|
248 |
+
)
|
249 |
+
if resblock_updown
|
250 |
+
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
251 |
+
)
|
252 |
+
)
|
253 |
+
ch = out_ch
|
254 |
+
ds *= 2
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
noisy_latents,
|
259 |
+
timesteps,
|
260 |
+
context_text,
|
261 |
+
context_img=None,
|
262 |
+
fps=None,
|
263 |
+
layer_latents=None, # [b, n_layer, t, c, h, w]
|
264 |
+
layer_latent_mask=None, # [b, n_layer, t, 1, h, w]
|
265 |
+
motion_scores=None, # [b, n_layer]
|
266 |
+
sketch=None, # [b, n_layer, t, c, h, w]
|
267 |
+
trajectory=None, # [b, n_layer, t, c, h, w]
|
268 |
+
):
|
269 |
+
if self.ignore_noisy_latents:
|
270 |
+
noisy_latents_shape = list(noisy_latents.shape)
|
271 |
+
noisy_latents_shape[1] = 0
|
272 |
+
noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype)
|
273 |
+
|
274 |
+
b, _, t, height, width = noisy_latents.shape
|
275 |
+
n_layer = layer_latents.shape[1]
|
276 |
+
t_emb = self.time_proj(timesteps).type(noisy_latents.dtype)
|
277 |
+
emb = self.time_embed(t_emb)
|
278 |
+
|
279 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
280 |
+
## check if we use per-frame image conditioning
|
281 |
+
if context_img is not None: ## decompose context into text and image
|
282 |
+
context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
|
283 |
+
context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer)
|
284 |
+
context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t)
|
285 |
+
context = torch.cat([context_text, context_img], dim=1)
|
286 |
+
else:
|
287 |
+
context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
|
288 |
+
emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t)
|
289 |
+
|
290 |
+
## always in shape (b n t) c h w, except for temporal layer
|
291 |
+
noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer)
|
292 |
+
|
293 |
+
## combine emb
|
294 |
+
if self.fps_condition:
|
295 |
+
if fps is None:
|
296 |
+
fps = torch.tensor(
|
297 |
+
[self.default_fs] * b, dtype=torch.long, device=noisy_latents.device)
|
298 |
+
fps_emb = self.time_proj(fps).type(noisy_latents.dtype)
|
299 |
+
|
300 |
+
fps_embed = self.fps_embedding(fps_emb)
|
301 |
+
fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t)
|
302 |
+
emb = emb + fps_embed
|
303 |
+
|
304 |
+
## process conditions
|
305 |
+
layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3)
|
306 |
+
layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w')
|
307 |
+
h = torch.cat([noisy_latents, layer_condition], dim=1)
|
308 |
+
|
309 |
+
if "motion_score" in self.condition_channels:
|
310 |
+
motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width)
|
311 |
+
motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3)
|
312 |
+
motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w')
|
313 |
+
motion_condition = self.motion_embedding(motion_condition)
|
314 |
+
if self.control_injection_mode == 'concat':
|
315 |
+
h = torch.cat([h, motion_condition], dim=1)
|
316 |
+
|
317 |
+
if "sketch" in self.condition_channels:
|
318 |
+
sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w')
|
319 |
+
sketch_condition = self.sketch_embedding(sketch_condition)
|
320 |
+
if self.control_injection_mode == 'concat':
|
321 |
+
h = torch.cat([h, sketch_condition], dim=1)
|
322 |
+
|
323 |
+
if "trajectory" in self.condition_channels:
|
324 |
+
traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w')
|
325 |
+
traj_condition = self.trajectory_embedding(traj_condition)
|
326 |
+
if self.control_injection_mode == 'concat':
|
327 |
+
h = torch.cat([h, traj_condition], dim=1)
|
328 |
+
|
329 |
+
layer_features = []
|
330 |
+
for id, module in enumerate(self.input_blocks):
|
331 |
+
h = module(h, emb, context=context, batch_size=b*n_layer)
|
332 |
+
if id == 0:
|
333 |
+
if self.control_injection_mode == 'add':
|
334 |
+
if "motion_score" in self.condition_channels:
|
335 |
+
h = h + motion_condition
|
336 |
+
if "sketch" in self.condition_channels:
|
337 |
+
h = h + sketch_condition
|
338 |
+
if "trajectory" in self.condition_channels:
|
339 |
+
h = h + traj_condition
|
340 |
+
if self.addition_attention:
|
341 |
+
h = self.init_attn(h, emb, context=context, batch_size=b*n_layer)
|
342 |
+
if SpatialTransformer in [type(m) for m in module]:
|
343 |
+
layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer))
|
344 |
+
|
345 |
+
return layer_features
|
346 |
+
|
347 |
+
@classmethod
|
348 |
+
def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs):
|
349 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
350 |
+
force_download = kwargs.pop("force_download", False)
|
351 |
+
proxies = kwargs.pop("proxies", None)
|
352 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
353 |
+
token = kwargs.pop("token", None)
|
354 |
+
revision = kwargs.pop("revision", None)
|
355 |
+
subfolder = kwargs.pop("subfolder", None)
|
356 |
+
variant = kwargs.pop("variant", None)
|
357 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
358 |
+
|
359 |
+
allow_pickle = False
|
360 |
+
if use_safetensors is None:
|
361 |
+
use_safetensors = True
|
362 |
+
allow_pickle = True
|
363 |
+
|
364 |
+
# Load config if we don't provide a configuration
|
365 |
+
config_path = pretrained_model_name_or_path
|
366 |
+
|
367 |
+
user_agent = {
|
368 |
+
"diffusers": __version__,
|
369 |
+
"file_type": "model",
|
370 |
+
"framework": "pytorch",
|
371 |
+
}
|
372 |
+
|
373 |
+
# load config
|
374 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
375 |
+
config_path,
|
376 |
+
cache_dir=cache_dir,
|
377 |
+
return_unused_kwargs=True,
|
378 |
+
return_commit_hash=True,
|
379 |
+
force_download=force_download,
|
380 |
+
proxies=proxies,
|
381 |
+
local_files_only=local_files_only,
|
382 |
+
token=token,
|
383 |
+
revision=revision,
|
384 |
+
subfolder=subfolder,
|
385 |
+
user_agent=user_agent,
|
386 |
+
**kwargs,
|
387 |
+
)
|
388 |
+
|
389 |
+
for key, value in layer_controlnet_additional_kwargs.items():
|
390 |
+
if isinstance(value, (ListConfig, DictConfig)):
|
391 |
+
config[key] = OmegaConf.to_container(value, resolve=True)
|
392 |
+
else:
|
393 |
+
config[key] = value
|
394 |
+
|
395 |
+
# load model
|
396 |
+
model_file = None
|
397 |
+
if use_safetensors:
|
398 |
+
try:
|
399 |
+
model_file = _get_model_file(
|
400 |
+
pretrained_model_name_or_path,
|
401 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
402 |
+
cache_dir=cache_dir,
|
403 |
+
force_download=force_download,
|
404 |
+
proxies=proxies,
|
405 |
+
local_files_only=local_files_only,
|
406 |
+
token=token,
|
407 |
+
revision=revision,
|
408 |
+
subfolder=subfolder,
|
409 |
+
user_agent=user_agent,
|
410 |
+
commit_hash=commit_hash,
|
411 |
+
)
|
412 |
+
|
413 |
+
except IOError as e:
|
414 |
+
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
|
415 |
+
if not allow_pickle:
|
416 |
+
raise
|
417 |
+
logger.warning(
|
418 |
+
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
|
419 |
+
)
|
420 |
+
|
421 |
+
if model_file is None:
|
422 |
+
model_file = _get_model_file(
|
423 |
+
pretrained_model_name_or_path,
|
424 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
425 |
+
cache_dir=cache_dir,
|
426 |
+
force_download=force_download,
|
427 |
+
proxies=proxies,
|
428 |
+
local_files_only=local_files_only,
|
429 |
+
token=token,
|
430 |
+
revision=revision,
|
431 |
+
subfolder=subfolder,
|
432 |
+
user_agent=user_agent,
|
433 |
+
commit_hash=commit_hash,
|
434 |
+
)
|
435 |
+
|
436 |
+
model = cls.from_config(config, **unused_kwargs)
|
437 |
+
state_dict = load_state_dict(model_file, variant)
|
438 |
+
|
439 |
+
if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]:
|
440 |
+
state_dict.pop('input_blocks.0.0.weight')
|
441 |
+
|
442 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
443 |
+
print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.")
|
444 |
+
return model
|