YuxueYang commited on
Commit
9bd5e40
·
1 Parent(s): 531d0cf

Drop class and use functionality for user-uploaded models

Browse files
Files changed (1) hide show
  1. app.py +195 -212
app.py CHANGED
@@ -28,224 +28,207 @@ import numpy as np
28
  from scipy.interpolate import PchipInterpolator
29
 
30
  SAVE_DIR = "outputs"
 
31
  LENGTH = 16
32
  WIDTH = 512
33
  HEIGHT = 320
34
  LAYER_CAPACITY = 4
35
  DEVICE = "cuda"
36
-
 
 
37
  os.makedirs("checkpoints", exist_ok=True)
38
 
39
  snapshot_download(
40
  "Yuppie1204/LayerAnimate-Mix",
41
  local_dir="checkpoints/LayerAnimate-Mix",
42
  )
43
-
44
- class LayerAnimate:
45
-
46
- @spaces.GPU
47
- def __init__(self):
48
- self.savedir = SAVE_DIR
49
- os.makedirs(self.savedir, exist_ok=True)
50
-
51
- self.weight_dtype = torch.bfloat16
52
- self.device = DEVICE
53
- self.text_encoder = FrozenOpenCLIPEmbedder().eval()
54
- self.image_encoder = FrozenOpenCLIPImageEmbedderV2().eval()
55
-
56
- self.W = WIDTH
57
- self.H = HEIGHT
58
- self.L = LENGTH
59
- self.layer_capacity = LAYER_CAPACITY
60
-
61
- self.transforms = transforms.Compose([
62
- transforms.Resize(min(self.H, self.W)),
63
- transforms.CenterCrop((self.H, self.W)),
64
- ])
65
- self.pipeline = None
66
- self.generator = None
67
- # sample_grid is used to generate fixed trajectories to freeze static layers
68
- self.sample_grid = np.meshgrid(np.linspace(0, self.W - 1, 10, dtype=int), np.linspace(0, self.H - 1, 10, dtype=int))
69
- self.sample_grid = np.stack(self.sample_grid, axis=-1).reshape(-1, 1, 2)
70
- self.sample_grid = np.repeat(self.sample_grid, self.L, axis=1) # [N, F, 2]
71
- self.set_model("checkpoints/LayerAnimate-Mix")
72
-
73
- @spaces.GPU
74
- def set_seed(self, seed):
75
- np.random.seed(seed)
76
- torch.manual_seed(seed)
77
- self.generator = torch.Generator(self.device).manual_seed(seed)
78
-
79
- @spaces.GPU
80
- def set_model(self, pretrained_model_path):
81
- scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
82
- image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
83
- vae, vae_dualref = None, None
84
- if "I2V" or "Mix" in pretrained_model_path:
85
- vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
86
- if "Interp" or "Mix" in pretrained_model_path:
87
- vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
88
- unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
89
- layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
90
-
91
- self.pipeline = AnimationPipeline(
92
- vae=vae, vae_dualref=vae_dualref, text_encoder=self.text_encoder, image_encoder=self.image_encoder, image_projector=image_projector,
93
- unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
94
- ).to(device=self.device, dtype=self.weight_dtype)
95
- if "Interp" or "Mix" in pretrained_model_path:
96
- self.pipeline.vae_dualref.decoder.to(dtype=torch.float32)
97
- return pretrained_model_path
98
-
99
- def upload_image(self, image):
100
- image = self.transforms(image)
101
- return image
102
-
103
- def run(self, input_image, input_image_end, pretrained_model_path, seed,
104
- prompt, n_prompt, num_inference_steps, guidance_scale,
105
- *layer_args):
106
- self.set_seed(seed)
107
- global layer_tracking_points
108
- args_layer_tracking_points = [layer_tracking_points[i].value for i in range(self.layer_capacity)]
109
-
110
- args_layer_masks = layer_args[:self.layer_capacity]
111
- args_layer_masks_end = layer_args[self.layer_capacity : 2 * self.layer_capacity]
112
- args_layer_controls = layer_args[2 * self.layer_capacity : 3 * self.layer_capacity]
113
- args_layer_scores = list(layer_args[3 * self.layer_capacity : 4 * self.layer_capacity])
114
- args_layer_sketches = layer_args[4 * self.layer_capacity : 5 * self.layer_capacity]
115
- args_layer_valids = layer_args[5 * self.layer_capacity : 6 * self.layer_capacity]
116
- args_layer_statics = layer_args[6 * self.layer_capacity : 7 * self.layer_capacity]
117
- for layer_idx in range(self.layer_capacity):
118
- if args_layer_controls[layer_idx] != "score":
119
- args_layer_scores[layer_idx] = -1
120
- if args_layer_statics[layer_idx]:
121
- args_layer_scores[layer_idx] = 0
122
-
123
- mode = "i2v"
124
- image1 = F.to_tensor(input_image) * 2 - 1
125
- frame_tensor = image1[None].to(self.device) # [F, C, H, W]
126
- if input_image_end is not None:
127
- mode = "interpolate"
128
- image2 = F.to_tensor(input_image_end) * 2 - 1
129
- frame_tensor2 = image2[None].to(self.device)
130
- frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
131
- frame_tensor = frame_tensor[None]
132
-
133
- if mode == "interpolate":
134
- layer_masks = torch.zeros((1, self.layer_capacity, 2, 1, self.H, self.W), dtype=torch.bool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  else:
136
- layer_masks = torch.zeros((1, self.layer_capacity, 1, 1, self.H, self.W), dtype=torch.bool)
137
- for layer_idx in range(self.layer_capacity):
138
- if args_layer_masks[layer_idx] is not None:
139
- mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
140
- layer_masks[0, layer_idx, 0] = mask
141
- if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
142
- mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
143
- layer_masks[0, layer_idx, 1] = mask
144
- layer_masks = layer_masks.to(self.device)
145
- layer_regions = layer_masks * frame_tensor[:, None]
146
- layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=self.device)
147
- motion_scores = torch.tensor([args_layer_scores], dtype=self.weight_dtype, device=self.device)
148
- layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=self.device)
149
-
150
- sketch = torch.ones((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
151
- for layer_idx in range(self.layer_capacity):
152
- sketch_path = args_layer_sketches[layer_idx]
153
- if sketch_path is not None:
154
- video_reader = decord.VideoReader(sketch_path)
155
- assert len(video_reader) == self.L, f"Input the length of sketch sequence should match the video length."
156
- video_frames = video_reader.get_batch(range(self.L)).asnumpy()
157
- sketch_values = [F.to_tensor(self.transforms(Image.fromarray(frame))) for frame in video_frames]
158
- sketch_values = torch.stack(sketch_values) * 2 - 1
159
- sketch[0, layer_idx] = sketch_values
160
- sketch = sketch.to(self.device)
161
-
162
- heatmap = torch.zeros((1, self.layer_capacity, self.L, 3, self.H, self.W), dtype=self.weight_dtype)
163
- heatmap[:, :, :, 0] -= 1
164
- trajectory = []
165
- traj_layer_index = []
166
- for layer_idx in range(self.layer_capacity):
167
- tracking_points = args_layer_tracking_points[layer_idx]
168
- if args_layer_statics[layer_idx]:
169
- # generate pseudo trajectory for static layers
170
- temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
171
- valid_flag = temp_layer_mask[self.sample_grid[:, 0, 1], self.sample_grid[:, 0, 0]]
172
- valid_grid = self.sample_grid[valid_flag] # [F, N, 2]
173
- trajectory.extend(list(valid_grid))
174
- traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
175
- else:
176
- for temp_track in tracking_points:
177
- if len(temp_track) > 1:
178
- x = [point[0] for point in temp_track]
179
- y = [point[1] for point in temp_track]
180
- t = np.linspace(0, 1, len(temp_track))
181
- fx = PchipInterpolator(t, x)
182
- fy = PchipInterpolator(t, y)
183
- t_new = np.linspace(0, 1, self.L)
184
- x_new = fx(t_new)
185
- y_new = fy(t_new)
186
- temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
187
- trajectory.append(temp_traj)
188
- traj_layer_index.append(layer_idx)
189
- elif len(temp_track) == 1:
190
- trajectory.append(np.array(temp_track * self.L))
191
- traj_layer_index.append(layer_idx)
192
-
193
- trajectory = np.stack(trajectory)
194
- trajectory = np.transpose(trajectory, (1, 0, 2))
195
- traj_layer_index = np.array(traj_layer_index)
196
- heatmap = generate_gaussian_heatmap(trajectory, self.W, self.H, traj_layer_index, self.layer_capacity, offset=True)
197
- heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
198
- graymap, offset = heatmap[:, :1], heatmap[:, 1:]
199
- graymap = graymap / 255.
200
- rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
201
- rad_max = torch.max(rad)
202
- epsilon = 1e-5
203
- offset = offset / (rad_max + epsilon)
204
- graymap = graymap * 2 - 1
205
- heatmap = torch.cat([graymap, offset], dim=1)
206
- heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=self.layer_capacity)
207
- heatmap = heatmap[None]
208
- heatmap = heatmap.to(self.device)
209
-
210
- sample = self.pipeline(
211
- prompt,
212
- self.L,
213
- self.H,
214
- self.W,
215
- frame_tensor,
216
- layer_masks = layer_masks,
217
- layer_regions = layer_regions,
218
- layer_static = layer_static,
219
- motion_scores = motion_scores,
220
- sketch = sketch,
221
- trajectory = heatmap,
222
- layer_validity = layer_validity,
223
- num_inference_steps = num_inference_steps,
224
- guidance_scale = guidance_scale,
225
- guidance_rescale = 0.7,
226
- negative_prompt = n_prompt,
227
- num_videos_per_prompt = 1,
228
- eta = 1.0,
229
- generator = self.generator,
230
- fps = 24,
231
- mode = mode,
232
- weight_dtype = self.weight_dtype,
233
- output_type = "tensor",
234
- ).videos
235
- output_video_path = os.path.join(self.savedir, "video.mp4")
236
- save_videos_grid(sample, output_video_path, fps=8)
237
- output_video_traj_path = os.path.join(self.savedir, "video_with_traj.mp4")
238
- vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
239
- for traj_idx in range(trajectory.shape[1]):
240
- if not args_layer_statics[traj_layer_index[traj_idx]]:
241
- vis_traj_flag[traj_idx] = True
242
- vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
243
- save_videos_with_traj(sample[0], vis_traj, os.path.join(self.savedir, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
244
- return output_video_path, output_video_traj_path
245
-
246
-
247
- layeranimate = LayerAnimate()
248
-
249
 
250
  def update_layer_region(image, layer_mask):
251
  if image is None or layer_mask is None:
@@ -558,13 +541,13 @@ if __name__ == "__main__":
558
  ```
559
  """)
560
 
561
- pretrained_model_path.input(layeranimate.set_model, pretrained_model_path, pretrained_model_path)
562
- input_image.upload(layeranimate.upload_image, input_image, input_image)
563
- input_image_end.upload(layeranimate.upload_image, input_image_end, input_image_end)
564
  for i in range(LAYER_CAPACITY):
565
- layer_masks[i].upload(layeranimate.upload_image, layer_masks[i], layer_masks[i])
566
  layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
567
- layer_masks_end[i].upload(layeranimate.upload_image, layer_masks_end[i], layer_masks_end[i])
568
  layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
569
  layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
570
  layer_traj_controls[i][1].click(
@@ -598,7 +581,7 @@ if __name__ == "__main__":
598
  [layer_regions[i], layer_regions_end[i]]
599
  )
600
  run_button.click(
601
- layeranimate.run,
602
  [input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
603
  *layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
604
  [output_video, output_video_traj]
 
28
  from scipy.interpolate import PchipInterpolator
29
 
30
  SAVE_DIR = "outputs"
31
+ os.makedirs(SAVE_DIR, exist_ok=True)
32
  LENGTH = 16
33
  WIDTH = 512
34
  HEIGHT = 320
35
  LAYER_CAPACITY = 4
36
  DEVICE = "cuda"
37
+ WEIGHT_DTYPE = torch.bfloat16
38
+ PIPELINE = None
39
+ GENERATOR = None
40
  os.makedirs("checkpoints", exist_ok=True)
41
 
42
  snapshot_download(
43
  "Yuppie1204/LayerAnimate-Mix",
44
  local_dir="checkpoints/LayerAnimate-Mix",
45
  )
46
+ TEXT_ENCODER = FrozenOpenCLIPEmbedder().eval()
47
+ IMAGE_ENCODER = FrozenOpenCLIPImageEmbedderV2().eval()
48
+
49
+ TRANSFORMS = transforms.Compose([
50
+ transforms.Resize(min(HEIGHT, WIDTH)),
51
+ transforms.CenterCrop((HEIGHT, WIDTH)),
52
+ ])
53
+ SAMPLE_GRID = np.meshgrid(np.linspace(0, WIDTH - 1, 10, dtype=int), np.linspace(0, HEIGHT - 1, 10, dtype=int))
54
+ SAMPLE_GRID = np.stack(SAMPLE_GRID, axis=-1).reshape(-1, 1, 2)
55
+ SAMPLE_GRID = np.repeat(SAMPLE_GRID, LENGTH, axis=1) # [N, F, 2]
56
+
57
+ @spaces.GPU
58
+ def set_seed(seed):
59
+ np.random.seed(seed)
60
+ torch.manual_seed(seed)
61
+ return torch.Generator(DEVICE).manual_seed(seed)
62
+
63
+ @spaces.GPU
64
+ def set_model(pretrained_model_path):
65
+ global PIPELINE
66
+ scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
67
+ image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
68
+ vae, vae_dualref = None, None
69
+ if "I2V" or "Mix" in pretrained_model_path:
70
+ vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
71
+ if "Interp" or "Mix" in pretrained_model_path:
72
+ vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
73
+ unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
74
+ layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
75
+
76
+ PIPELINE = AnimationPipeline(
77
+ vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
78
+ unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
79
+ ).to(device=DEVICE, dtype=WEIGHT_DTYPE)
80
+ if "Interp" or "Mix" in pretrained_model_path:
81
+ PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
82
+ return pretrained_model_path
83
+
84
+ set_model("checkpoints/LayerAnimate-Mix")
85
+
86
+ def upload_image(image):
87
+ image = TRANSFORMS(image)
88
+ return image
89
+
90
+ def run(input_image, input_image_end, pretrained_model_path, seed,
91
+ prompt, n_prompt, num_inference_steps, guidance_scale,
92
+ *layer_args):
93
+ generator = set_seed(seed)
94
+ global layer_tracking_points
95
+ args_layer_tracking_points = [layer_tracking_points[i].value for i in range(LAYER_CAPACITY)]
96
+
97
+ args_layer_masks = layer_args[:LAYER_CAPACITY]
98
+ args_layer_masks_end = layer_args[LAYER_CAPACITY : 2 * LAYER_CAPACITY]
99
+ args_layer_controls = layer_args[2 * LAYER_CAPACITY : 3 * LAYER_CAPACITY]
100
+ args_layer_scores = list(layer_args[3 * LAYER_CAPACITY : 4 * LAYER_CAPACITY])
101
+ args_layer_sketches = layer_args[4 * LAYER_CAPACITY : 5 * LAYER_CAPACITY]
102
+ args_layer_valids = layer_args[5 * LAYER_CAPACITY : 6 * LAYER_CAPACITY]
103
+ args_layer_statics = layer_args[6 * LAYER_CAPACITY : 7 * LAYER_CAPACITY]
104
+ for layer_idx in range(LAYER_CAPACITY):
105
+ if args_layer_controls[layer_idx] != "score":
106
+ args_layer_scores[layer_idx] = -1
107
+ if args_layer_statics[layer_idx]:
108
+ args_layer_scores[layer_idx] = 0
109
+
110
+ mode = "i2v"
111
+ image1 = F.to_tensor(input_image) * 2 - 1
112
+ frame_tensor = image1[None].to(DEVICE) # [F, C, H, W]
113
+ if input_image_end is not None:
114
+ mode = "interpolate"
115
+ image2 = F.to_tensor(input_image_end) * 2 - 1
116
+ frame_tensor2 = image2[None].to(DEVICE)
117
+ frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
118
+ frame_tensor = frame_tensor[None]
119
+
120
+ if mode == "interpolate":
121
+ layer_masks = torch.zeros((1, LAYER_CAPACITY, 2, 1, HEIGHT, WIDTH), dtype=torch.bool)
122
+ else:
123
+ layer_masks = torch.zeros((1, LAYER_CAPACITY, 1, 1, HEIGHT, WIDTH), dtype=torch.bool)
124
+ for layer_idx in range(LAYER_CAPACITY):
125
+ if args_layer_masks[layer_idx] is not None:
126
+ mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
127
+ layer_masks[0, layer_idx, 0] = mask
128
+ if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
129
+ mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
130
+ layer_masks[0, layer_idx, 1] = mask
131
+ layer_masks = layer_masks.to(DEVICE)
132
+ layer_regions = layer_masks * frame_tensor[:, None]
133
+ layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=DEVICE)
134
+ motion_scores = torch.tensor([args_layer_scores], dtype=WEIGHT_DTYPE, device=DEVICE)
135
+ layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=DEVICE)
136
+
137
+ sketch = torch.ones((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
138
+ for layer_idx in range(LAYER_CAPACITY):
139
+ sketch_path = args_layer_sketches[layer_idx]
140
+ if sketch_path is not None:
141
+ video_reader = decord.VideoReader(sketch_path)
142
+ assert len(video_reader) == LENGTH, f"Input the length of sketch sequence should match the video length."
143
+ video_frames = video_reader.get_batch(range(LENGTH)).asnumpy()
144
+ sketch_values = [F.to_tensor(TRANSFORMS(Image.fromarray(frame))) for frame in video_frames]
145
+ sketch_values = torch.stack(sketch_values) * 2 - 1
146
+ sketch[0, layer_idx] = sketch_values
147
+ sketch = sketch.to(DEVICE)
148
+
149
+ heatmap = torch.zeros((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
150
+ heatmap[:, :, :, 0] -= 1
151
+ trajectory = []
152
+ traj_layer_index = []
153
+ for layer_idx in range(LAYER_CAPACITY):
154
+ tracking_points = args_layer_tracking_points[layer_idx]
155
+ if args_layer_statics[layer_idx]:
156
+ # generate pseudo trajectory for static layers
157
+ temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
158
+ valid_flag = temp_layer_mask[SAMPLE_GRID[:, 0, 1], SAMPLE_GRID[:, 0, 0]]
159
+ valid_grid = SAMPLE_GRID[valid_flag] # [F, N, 2]
160
+ trajectory.extend(list(valid_grid))
161
+ traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
162
  else:
163
+ for temp_track in tracking_points:
164
+ if len(temp_track) > 1:
165
+ x = [point[0] for point in temp_track]
166
+ y = [point[1] for point in temp_track]
167
+ t = np.linspace(0, 1, len(temp_track))
168
+ fx = PchipInterpolator(t, x)
169
+ fy = PchipInterpolator(t, y)
170
+ t_new = np.linspace(0, 1, LENGTH)
171
+ x_new = fx(t_new)
172
+ y_new = fy(t_new)
173
+ temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
174
+ trajectory.append(temp_traj)
175
+ traj_layer_index.append(layer_idx)
176
+ elif len(temp_track) == 1:
177
+ trajectory.append(np.array(temp_track * LENGTH))
178
+ traj_layer_index.append(layer_idx)
179
+
180
+ trajectory = np.stack(trajectory)
181
+ trajectory = np.transpose(trajectory, (1, 0, 2))
182
+ traj_layer_index = np.array(traj_layer_index)
183
+ heatmap = generate_gaussian_heatmap(trajectory, WIDTH, HEIGHT, traj_layer_index, LAYER_CAPACITY, offset=True)
184
+ heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
185
+ graymap, offset = heatmap[:, :1], heatmap[:, 1:]
186
+ graymap = graymap / 255.
187
+ rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
188
+ rad_max = torch.max(rad)
189
+ epsilon = 1e-5
190
+ offset = offset / (rad_max + epsilon)
191
+ graymap = graymap * 2 - 1
192
+ heatmap = torch.cat([graymap, offset], dim=1)
193
+ heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=LAYER_CAPACITY)
194
+ heatmap = heatmap[None]
195
+ heatmap = heatmap.to(DEVICE)
196
+
197
+ sample = PIPELINE(
198
+ prompt,
199
+ LENGTH,
200
+ HEIGHT,
201
+ WIDTH,
202
+ frame_tensor,
203
+ layer_masks = layer_masks,
204
+ layer_regions = layer_regions,
205
+ layer_static = layer_static,
206
+ motion_scores = motion_scores,
207
+ sketch = sketch,
208
+ trajectory = heatmap,
209
+ layer_validity = layer_validity,
210
+ num_inference_steps = num_inference_steps,
211
+ guidance_scale = guidance_scale,
212
+ guidance_rescale = 0.7,
213
+ negative_prompt = n_prompt,
214
+ num_videos_per_prompt = 1,
215
+ eta = 1.0,
216
+ generator = generator,
217
+ fps = 24,
218
+ mode = mode,
219
+ weight_dtype = WEIGHT_DTYPE,
220
+ output_type = "tensor",
221
+ ).videos
222
+ output_video_path = os.path.join(SAVE_DIR, "video.mp4")
223
+ save_videos_grid(sample, output_video_path, fps=8)
224
+ output_video_traj_path = os.path.join(SAVE_DIR, "video_with_traj.mp4")
225
+ vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
226
+ for traj_idx in range(trajectory.shape[1]):
227
+ if not args_layer_statics[traj_layer_index[traj_idx]]:
228
+ vis_traj_flag[traj_idx] = True
229
+ vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
230
+ save_videos_with_traj(sample[0], vis_traj, os.path.join(SAVE_DIR, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
231
+ return output_video_path, output_video_traj_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
233
  def update_layer_region(image, layer_mask):
234
  if image is None or layer_mask is None:
 
541
  ```
542
  """)
543
 
544
+ pretrained_model_path.input(set_model, pretrained_model_path, pretrained_model_path)
545
+ input_image.upload(upload_image, input_image, input_image)
546
+ input_image_end.upload(upload_image, input_image_end, input_image_end)
547
  for i in range(LAYER_CAPACITY):
548
+ layer_masks[i].upload(upload_image, layer_masks[i], layer_masks[i])
549
  layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
550
+ layer_masks_end[i].upload(upload_image, layer_masks_end[i], layer_masks_end[i])
551
  layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
552
  layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
553
  layer_traj_controls[i][1].click(
 
581
  [layer_regions[i], layer_regions_end[i]]
582
  )
583
  run_button.click(
584
+ run,
585
  [input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
586
  *layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
587
  [output_video, output_video_traj]