Spaces:
Sleeping
Sleeping
Rename app (1).py to app.py
Browse files- app (1).py → app.py +10 -10
app (1).py → app.py
RENAMED
@@ -6,7 +6,7 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
import gradio as gr
|
8 |
import subprocess
|
9 |
-
|
10 |
# Ensure Playwright installs required browsers and dependencies
|
11 |
subprocess.run(["playwright", "install"])
|
12 |
#subprocess.run(["playwright", "install-deps"])
|
@@ -20,7 +20,7 @@ repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
20 |
llm_model_instance = HuggingFaceEndpoint(
|
21 |
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
|
22 |
)
|
23 |
-
|
24 |
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
|
25 |
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
|
26 |
)
|
@@ -29,7 +29,7 @@ graph_config = {
|
|
29 |
"llm": {"model_instance": llm_model_instance},
|
30 |
"embeddings": {"model_instance": embedder_model_instance}
|
31 |
}
|
32 |
-
|
33 |
def scrape_and_summarize(prompt, source):
|
34 |
smart_scraper_graph = SmartScraperGraph(
|
35 |
prompt=prompt,
|
@@ -40,24 +40,24 @@ def scrape_and_summarize(prompt, source):
|
|
40 |
exec_info = smart_scraper_graph.get_execution_info()
|
41 |
return result, prettify_exec_info(exec_info)
|
42 |
|
43 |
-
# Gradio interface
|
44 |
with gr.Blocks() as demo:
|
45 |
gr.Markdown("# Scrape websites, no-code version")
|
46 |
gr.Markdown("""Easily scrape and summarize web content using advanced AI models on the Hugging Face Hub without writing any code. Input your desired prompt and source URL to get started.
|
47 |
This is a no-code version of the excellent lib [ScrapeGraphAI](https://github.com/VinciGit00/Scrapegraph-ai).
|
48 |
It's a basic demo and a work in progress. Please contribute to it to make it more useful!""")
|
49 |
-
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
|
53 |
-
model_dropdown = gr.Textbox(label="Model", value="Mistral-7B-Instruct-v0.2")
|
54 |
-
prompt_input = gr.Textbox(label="Prompt", value="List me all the
|
55 |
-
source_input = gr.Textbox(label="Source URL", value="https://www.
|
56 |
-
scrape_button = gr.Button("Scrape
|
57 |
|
58 |
with gr.Column():
|
59 |
result_output = gr.JSON(label="Result")
|
60 |
-
exec_info_output = gr.Textbox(label="
|
61 |
|
62 |
scrape_button.click(
|
63 |
scrape_and_summarize,
|
|
|
6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
import gradio as gr
|
8 |
import subprocess
|
9 |
+
#Using Mistral Modal
|
10 |
# Ensure Playwright installs required browsers and dependencies
|
11 |
subprocess.run(["playwright", "install"])
|
12 |
#subprocess.run(["playwright", "install-deps"])
|
|
|
20 |
llm_model_instance = HuggingFaceEndpoint(
|
21 |
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
|
22 |
)
|
23 |
+
#Calling Sentence Transformer
|
24 |
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
|
25 |
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
|
26 |
)
|
|
|
29 |
"llm": {"model_instance": llm_model_instance},
|
30 |
"embeddings": {"model_instance": embedder_model_instance}
|
31 |
}
|
32 |
+
#To Scrape the data and summarize it
|
33 |
def scrape_and_summarize(prompt, source):
|
34 |
smart_scraper_graph = SmartScraperGraph(
|
35 |
prompt=prompt,
|
|
|
40 |
exec_info = smart_scraper_graph.get_execution_info()
|
41 |
return result, prettify_exec_info(exec_info)
|
42 |
|
43 |
+
# Gradio User interface
|
44 |
with gr.Blocks() as demo:
|
45 |
gr.Markdown("# Scrape websites, no-code version")
|
46 |
gr.Markdown("""Easily scrape and summarize web content using advanced AI models on the Hugging Face Hub without writing any code. Input your desired prompt and source URL to get started.
|
47 |
This is a no-code version of the excellent lib [ScrapeGraphAI](https://github.com/VinciGit00/Scrapegraph-ai).
|
48 |
It's a basic demo and a work in progress. Please contribute to it to make it more useful!""")
|
49 |
+
#(https://github.com/VinciGit00/Scrapegraph-ai) is suggested by the tutor
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
|
53 |
+
model_dropdown = gr.Textbox(label="Model", value="Mistral-7B-Instruct-v0.2, As all-MiniLM-l6-v2")
|
54 |
+
prompt_input = gr.Textbox(label="Prompt", value="List me all the doctors name and their timing")
|
55 |
+
source_input = gr.Textbox(label="Source URL", value="https://www.yelp.com/search?find_desc=dentist&find_loc=San+Francisco%2C+CA")
|
56 |
+
scrape_button = gr.Button("Scrape the data")
|
57 |
|
58 |
with gr.Column():
|
59 |
result_output = gr.JSON(label="Result")
|
60 |
+
exec_info_output = gr.Textbox(label="Output Info")
|
61 |
|
62 |
scrape_button.click(
|
63 |
scrape_and_summarize,
|