Spaces:
Runtime error
Runtime error
Add functions
Browse files- app.py +5 -1
- functions/model_infer.py +39 -0
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from os import pipe
|
2 |
import gradio as gr
|
3 |
from functions.punctuation import punctuate
|
|
|
|
|
4 |
|
5 |
title = "sponsoredBye - never listen to sponsors again"
|
6 |
description = "Sponsored sections in videos are annoying and take up a lot of time. Improve your YouTube watching experience, by filling in the youtube url and figure out what segments to skip."
|
@@ -10,8 +12,10 @@ article = "Check out [the original Rick and Morty Bot](https://huggingface.co/sp
|
|
10 |
def pipeline(video_url):
|
11 |
video_id = video_url.split("?v=")[-1]
|
12 |
punctuated_text = punctuate(video_id)
|
|
|
|
|
13 |
# return punctuated_text
|
14 |
-
return [{"start": "12:05", "end": "12:52"}]
|
15 |
|
16 |
|
17 |
# print(pipeline("VL5M5ZihJK4"))
|
|
|
1 |
from os import pipe
|
2 |
import gradio as gr
|
3 |
from functions.punctuation import punctuate
|
4 |
+
from functions.model_infer import predict_from_document
|
5 |
+
|
6 |
|
7 |
title = "sponsoredBye - never listen to sponsors again"
|
8 |
description = "Sponsored sections in videos are annoying and take up a lot of time. Improve your YouTube watching experience, by filling in the youtube url and figure out what segments to skip."
|
|
|
12 |
def pipeline(video_url):
|
13 |
video_id = video_url.split("?v=")[-1]
|
14 |
punctuated_text = punctuate(video_id)
|
15 |
+
sentences = re.split(r"[\.\!\?]\s", punctuated_text)
|
16 |
+
classification = predict_from_document(sentences)
|
17 |
# return punctuated_text
|
18 |
+
return [{"start": "12:05", "end": "12:52", "classification": str(classification)}]
|
19 |
|
20 |
|
21 |
# print(pipeline("VL5M5ZihJK4"))
|
functions/model_infer.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
2 |
+
import tensorflow as tf
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
from keras.models import load_model
|
6 |
+
|
7 |
+
headers = {"Authorization": f"Bearer {os.environ['HF_Token']}"}
|
8 |
+
|
9 |
+
model = load_model("RNN_model.keras")
|
10 |
+
|
11 |
+
|
12 |
+
def query_embeddings(texts):
|
13 |
+
payload = {"inputs": texts, "options": {"wait_for_model": True}}
|
14 |
+
|
15 |
+
model_id = "sentence-transformers/sentence-t5-base"
|
16 |
+
API_URL = (
|
17 |
+
f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
18 |
+
)
|
19 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
|
23 |
+
def preprocess(sentences):
|
24 |
+
max_len = 1682
|
25 |
+
embeddings = query_embeddings(sentences)
|
26 |
+
|
27 |
+
if len(sentences) > max_len:
|
28 |
+
X = embeddings[:max_len]
|
29 |
+
else:
|
30 |
+
X = embeddings
|
31 |
+
X_padded = pad_sequences([X], maxlen=max_len, dtype="float32", padding="post")
|
32 |
+
return X_padded
|
33 |
+
|
34 |
+
|
35 |
+
def predict_from_document(sentences):
|
36 |
+
preprop = preprocess(sentences)
|
37 |
+
prediction = model.predict(preprop)
|
38 |
+
output = (prediction.flatten()[: len(sentences)] >= 0.5).astype(int)
|
39 |
+
return output
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
youtube_transcript_api
|
|
|
|
|
|
|
|
1 |
youtube_transcript_api
|
2 |
+
tensorflow==2.16.1
|
3 |
+
keras=3.3.3
|
4 |
+
keras-nlp
|