from datetime import datetime import pandas as pd import streamlit as st def months_between_dates(start_date, end_date): return (end_date.year - start_date.year) * 12 + (end_date.month - start_date.month) def calculate_lifespan(row): if pd.notna(row["Churned"]): return (row["Churned"] - row["Date"]).days else: return (datetime.now() - row["Date"]).days def date_filtered_df(df, start_date, end_date): return df[(df['Date'] >= start_date) & (df['Date'] <= end_date)] def average_customer_lifespan_calculation( df, start_date, end_date, ) -> float: df.sort_values(by=['Customer', 'Date'], inplace=True) mask = (df['Date'] >= start_date) & (df['Date'] <= end_date) df = df.loc[mask] df["Lifespan"] = df.apply(calculate_lifespan, axis=1) df = df.dropna(subset=["Value"]) # Calculate average customer lifespan return round(df["Lifespan"].mean(), 0) def icon_select(value): if value >= 7: return '🚀' elif value >= 5: return '🔥' elif value > 3.5: return '💤' else: return '💀' @st.cache_data(ttl="5m") def get_data(file_link): if 'dl=0' in file_link: file_link = file_link.replace('dl=0', 'dl=1') all_data_df = pd.read_excel(file_link) return all_data_df st.title('Customer LTV Calculator') file_link = st.text_input( 'Link to data file', ) if not file_link: st.stop() all_data_df = get_data(file_link) col1, col2, col3 = st.columns(3) with col1: start_date = st.date_input( 'Start Date:', value=pd.to_datetime('2022-09-01'), max_value=pd.to_datetime(datetime.now().date()), format='DD-MM-YYYY', ) with col2: end_date = st.date_input( 'End Date:', value=pd.to_datetime(datetime.now().date()), max_value=pd.to_datetime(datetime.now().date()), format='DD-MM-YYYY', ) with col3: start_datetime = pd.to_datetime(start_date) end_datetime = pd.to_datetime(end_date) number_of_months = months_between_dates(start_datetime, end_datetime) st.write(str(number_of_months), 'months') calculated_acl = average_customer_lifespan_calculation( all_data_df, start_datetime, end_datetime, ) if start_date < end_date: # Filter the dataframe based on the selected date range mask = (all_data_df['Date'] >= start_datetime) & (all_data_df['Date'] <= end_datetime) all_data_df = all_data_df.loc[mask] else: st.error('Error: End date must be after the start date.') all_data_date_filtered = date_filtered_df(all_data_df, start_datetime, end_datetime) average_order_size = all_data_date_filtered['Value'].mean() formatted_num = "£{:,.2f}".format(average_order_size) st.write('Average order size (AOS):', str(formatted_num)) purchase_frequency = all_data_date_filtered.groupby('Customer')['Date'].nunique() average_purchase_frequency_rate = purchase_frequency.mean()/number_of_months st.write('Average purchase frequency rate (APFR) per customer per month:', str(round(average_purchase_frequency_rate, 2))) customer_value = average_order_size * average_purchase_frequency_rate customer_value_formatted = "£{:,.2f}".format(customer_value) st.write('Customer Value (AOS x APFR):', customer_value_formatted) average_customer_lifespan = 12 average_customer_lifespan = st.slider( f'Average Customer Lifespan (months) - calculated value {calculated_acl} days', min_value=1, max_value=50, step=1, value=12, ) customer_lifetime_vale = average_customer_lifespan * customer_value customer_lifetime_vale_formatted = "£{:,.2f}".format(customer_lifetime_vale) st.write('Customer Lifetime Value (CLV):', customer_lifetime_vale_formatted) acquisition_cost = 50 acquisition_cost = st.slider('Cost of acquisition', min_value=0, max_value=1000, step=10, value=50) clv_cac_ratio = customer_lifetime_vale/acquisition_cost all_data_df['year_month'] = all_data_df['Date'].dt.to_period('M') all_data_df = all_data_df.sort_values(by='Date') st.write( 'CLV to CAC ratio:', "{:,.2f}".format(clv_cac_ratio), ': 1', icon_select(clv_cac_ratio), )