sam_yolo_flask / app.py
IbrahimaThioye's picture
Create app.py
0578219 verified
raw
history blame
24.5 kB
from flask import Flask, request, jsonify, render_template, url_for
from flask_socketio import SocketIO
import threading
from ultralytics import YOLO
import numpy as np
import cv2
import matplotlib.pyplot as plt
import importlib
from segment_anything import sam_model_registry, SamPredictor
import os
from werkzeug.utils import secure_filename
import logging
import json
import shutil
import sys
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
app = Flask(__name__)
socketio = SocketIO(app)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
class Config:
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
UPLOAD_FOLDER = os.path.join(BASE_DIR, 'static', 'uploads')
SAM_RESULT_FOLDER = os.path.join(BASE_DIR, 'static', 'sam','sam_results')
YOLO_RESULT_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','yolo_results')
YOLO_TRAIN_IMAGE_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo','train','images')
YOLO_TRAIN_LABEL_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo','train','labels')
AREA_DATA_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','area_data')
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16MB max file size
SAM_CHECKPOINT = os.path.join(BASE_DIR, 'static', 'sam',"sam_vit_h_4b8939.pth")
SAM_2 = os.path.join(BASE_DIR, 'static', 'sam',"sam2.1_hiera_large.pt")
YOLO_PATH = os.path.join(BASE_DIR, 'static', 'yolo', "model_yolo.pt")
RETRAINED_MODEL_PATH = os.path.join(BASE_DIR, 'static', 'yolo', "model_retrained.pt")
DATA_PATH = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo', "data.yaml")
app.config.from_object(Config)
# Ensure directories exist
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['SAM_RESULT_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_RESULT_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_TRAIN_IMAGE_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_TRAIN_LABEL_FOLDER'], exist_ok=True)
os.makedirs(app.config['AREA_DATA_FOLDER'], exist_ok=True)
# Initialize Yolo model
try:
model = YOLO(app.config['YOLO_PATH'])
except Exception as e:
logger.error(f"Failed to initialize YOLO model: {str(e)}")
raise
try:
sam2_checkpoint = app.config['SAM_2']
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
predictor = SAM2ImagePredictor(sam2_model)
except Exception as e:
logger.error(f"Failed to initialize SAM model: {str(e)}")
raise
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
def scale_coordinates(coords, original_dims, target_dims):
"""
Scale coordinates from one dimension space to another.
Args:
coords: List of [x, y] coordinates
original_dims: Tuple of (width, height) of original space
target_dims: Tuple of (width, height) of target space
Returns:
Scaled coordinates
"""
scale_x = target_dims[0] / original_dims[0]
scale_y = target_dims[1] / original_dims[1]
return [
[int(coord[0] * scale_x), int(coord[1] * scale_y)]
for coord in coords
]
def scale_box(box, original_dims, target_dims):
"""
Scale bounding box coordinates from one dimension space to another.
Args:
box: List of [x1, y1, x2, y2] coordinates
original_dims: Tuple of (width, height) of original space
target_dims: Tuple of (width, height) of target space
Returns:
Scaled box coordinates
"""
scale_x = target_dims[0] / original_dims[0]
scale_y = target_dims[1] / original_dims[1]
return [
int(box[0] * scale_x), # x1
int(box[1] * scale_y), # y1
int(box[2] * scale_x), # x2
int(box[3] * scale_y) # y2
]
def retrain_model_fn():
# Parameters for retraining
data_path = app.config['DATA_PATH']
epochs = 5
img_size = 640
batch_size = 8
# Start training with YOLO, using event listeners for epoch completion
for epoch in range(epochs):
# Train the model for one epoch, here we simulate with a loop
model.train(
data=data_path,
epochs=1, # Use 1 epoch per call to get individual progress
imgsz=img_size,
batch=batch_size,
device="cpu" # Adjust based on system capabilities
)
# Emit an update to the client after each epoch
socketio.emit('training_update', {
'epoch': epoch + 1,
'status': f"Epoch {epoch + 1} complete"
})
# Emit a message once training is complete
socketio.emit('training_complete', {'status': "Retraining complete"})
model.save(app.config['YOLO_PATH'])
logger.info("Model retrained successfully")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/yolo')
def yolo():
return render_template('yolo.html')
@app.route('/upload_sam', methods=['POST'])
def upload_sam_file():
"""
Handles SAM image upload and embeds the image into the predictor instance.
Returns:
JSON response with 'message', 'image_url', 'filename', and 'dimensions' keys
on success, or 'error' key with an appropriate error message on failure.
"""
try:
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if not allowed_file(file.filename):
return jsonify({'error': 'Invalid file type. Allowed types: PNG, JPG, JPEG'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Set the image for predictor right after upload
image = cv2.imread(filepath)
if image is None:
return jsonify({'error': 'Failed to load uploaded image'}), 500
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
logger.info("Image embedded successfully")
# Get image dimensions
height, width = image.shape[:2]
image_url = url_for('static', filename=f'uploads/{filename}')
logger.info(f"File uploaded successfully: {filepath}")
return jsonify({
'message': 'File uploaded successfully',
'image_url': image_url,
'filename': filename,
'dimensions': {
'width': width,
'height': height
}
})
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return jsonify({'error': 'Server error during upload'}), 500
@app.route('/upload_yolo', methods=['POST'])
def upload_yolo_file():
"""
Upload a YOLO image file
This endpoint allows a POST request containing a single image file. The file is
saved to the uploads folder and the image is embedded into the YOLO model.
Returns a JSON response with the following keys:
- message: a success message
- image_url: the URL of the uploaded image
- filename: the name of the uploaded file
If an error occurs, the JSON response will contain an 'error' key with a
descriptive error message.
"""
try:
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if not allowed_file(file.filename):
return jsonify({'error': 'Invalid file type. Allowed types: PNG, JPG, JPEG'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
image_url = url_for('static', filename=f'uploads/{filename}')
logger.info(f"File uploaded successfully: {filepath}")
return jsonify({
'message': 'File uploaded successfully',
'image_url': image_url,
'filename': filename,
})
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return jsonify({'error': 'Server error during upload'}), 500
@app.route('/generate_mask', methods=['POST'])
def generate_mask():
"""
Generate a mask for a given image using the YOLO model
@param data: a JSON object containing the following keys:
- filename: the name of the image file
- normalized_void_points: a list of normalized 2D points (x, y) representing the voids
- normalized_component_boxes: a list of normalized 2D bounding boxes (x, y, w, h) representing the components
@return: a JSON object containing the following keys:
- status: a string indicating the status of the request
- train_image_url: the URL of the saved train image
- result_path: the URL of the saved result image
"""
try:
data = request.json
normalized_void_points = data.get('void_points', [])
normalized_component_boxes = data.get('component_boxes', [])
filename = data.get('filename', '')
if not filename:
return jsonify({'error': 'No filename provided'}), 400
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if not os.path.exists(image_path):
return jsonify({'error': 'Image file not found'}), 404
# Read image
image = cv2.imread(image_path)
if image is None:
return jsonify({'error': 'Failed to load image'}), 500
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_height, image_width = image.shape[:2]
# Denormalize coordinates back to pixel values
void_points = [
[int(point[0] * image_width), int(point[1] * image_height)]
for point in normalized_void_points
]
logger.info(f"Void points: {void_points}")
component_boxes = [
[
int(box[0] * image_width),
int(box[1] * image_height),
int(box[2] * image_width),
int(box[3] * image_height)
]
for box in normalized_component_boxes
]
logger.info(f"Void points: {void_points}")
# Create a list to store individual void masks
void_masks = []
# Process void points one by one
for point in void_points:
# Convert point to correct format: [N, 2] array
point_coord = np.array([[point[0], point[1]]])
point_label = np.array([1]) # Single label
masks, scores, _ = predictor.predict(
point_coords=point_coord,
point_labels=point_label,
multimask_output=True # Get multiple masks
)
if len(masks) > 0: # Check if any masks were generated
# Get the mask with highest score
best_mask_idx = np.argmax(scores)
void_masks.append(masks[best_mask_idx])
logger.info(f"Processed void point {point} with score {scores[best_mask_idx]}")
# Process component boxes
component_masks = []
if component_boxes:
for box in component_boxes:
# Convert box to correct format: [2, 2] array
box_np = np.array([[box[0], box[1]], [box[2], box[3]]])
masks, scores, _ = predictor.predict(
box=box_np,
multimask_output=True
)
if len(masks) > 0:
best_mask_idx = np.argmax(scores)
component_masks.append(masks[best_mask_idx])
logger.info(f"Processed component box {box}")
# Create visualization with different colors for each void
combined_image = image.copy()
# Font settings for labels
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
font_color = (0,0,0) # White text color
font_thickness = 1
background_color = (255, 255, 255) # White background for text
# Helper function to get bounding box coordinates
def get_bounding_box(mask):
coords = np.column_stack(np.where(mask))
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
return (x_min, y_min, x_max, y_max)
# Helper function to add text with background
def put_text_with_background(img, text, pos):
# Calculate text size
(text_w, text_h), _ = cv2.getTextSize(text, font, font_scale, font_thickness)
# Define the rectangle coordinates for background
background_tl = (pos[0], pos[1] - text_h - 2)
background_br = (pos[0] + text_w, pos[1] + 2)
# Draw white rectangle as background
cv2.rectangle(img, background_tl, background_br, background_color, -1)
# Put the text over the background rectangle
cv2.putText(img, text, pos, font, font_scale, font_color, font_thickness, cv2.LINE_AA)
def get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, img_width, img_height):
# Default to top-right of bounding box
x_pos = min(y_max, img_width - text_w - 10) # Keep 10px margin from the right
y_pos = max(x_min + text_h + 5, text_h + 5) # Keep 5px margin from the top
return x_pos, y_pos
# Apply void masks with different colors
for mask in void_masks:
mask = mask.astype(bool)
combined_image[mask, 0] = np.clip(0.5 * image[mask, 0] + 0.5 * 255, 0, 255) # Red channel with transparency
combined_image[mask, 1] = np.clip(0.5 * image[mask, 1], 0, 255) # Green channel reduced
combined_image[mask, 2] = np.clip(0.5 * image[mask, 2], 0, 255)
logger.info("Mask Drawn")
# Apply component masks in green
for mask in component_masks:
mask = mask.astype(bool)
# Only apply green where there is no red overlay
non_red_area = mask & ~np.any([void_mask for void_mask in void_masks], axis=0)
combined_image[non_red_area, 0] = np.clip(0.5 * image[non_red_area, 0], 0, 255) # Reduced red channel
combined_image[non_red_area, 1] = np.clip(0.5 * image[non_red_area, 1] + 0.5 * 255, 0, 255) # Green channel
combined_image[non_red_area, 2] = np.clip(0.5 * image[non_red_area, 2], 0, 255)
logger.info("Mask Drawn")
# Add labels on top of masks
for i,mask in enumerate(void_masks):
x_min, y_min, x_max, y_max = get_bounding_box(mask)
(text_w, text_h), _ = cv2.getTextSize("Void", font, font_scale, font_thickness)
label_position = get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, combined_image.shape[1], combined_image.shape[0])
put_text_with_background(combined_image, f"Void {i+1}", label_position)
for i,mask in enumerate(component_masks):
i=i+1
x_min, y_min, x_max, y_max = get_bounding_box(mask)
(text_w, text_h), _ = cv2.getTextSize("Component", font, font_scale, font_thickness)
label_position = get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, combined_image.shape[1], combined_image.shape[0])
put_text_with_background(combined_image, f"Component {i}", label_position)
# Prepare an empty list to store the output in the required format
mask_coordinates = []
for mask in void_masks:
# Get contours from the mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Image dimensions
height, width = mask.shape
# For each contour, extract the normalized coordinates
for contour in contours:
contour_points = contour.reshape(-1, 2) # Flatten to (N, 2) where N is the number of points
normalized_points = contour_points / [width, height] # Normalize to (0, 1)
class_id = 1 # 1 for voids
row = [class_id] + normalized_points.flatten().tolist() # Flatten and add the class
mask_coordinates.append(row)
for mask in component_masks:
# Get contours from the mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter to keep only the largest contour
contours = sorted(contours, key=cv2.contourArea, reverse=True)
largest_contour = [contours[0]] if contours else []
# Image dimensions
height, width = mask.shape
# For each contour, extract the normalized coordinates
for contour in largest_contour:
contour_points = contour.reshape(-1, 2) # Flatten to (N, 2) where N is the number of points
normalized_points = contour_points / [width, height] # Normalize to (0, 1)
class_id = 0 # for components
row = [class_id] + normalized_points.flatten().tolist() # Flatten and add the class
mask_coordinates.append(row)
mask_coordinates_filename = f'{filename}.txt' # Create a unique filename
mask_coordinates_path = os.path.join(app.config['YOLO_TRAIN_LABEL_FOLDER'], mask_coordinates_filename)
with open(mask_coordinates_path, "w") as file:
for row in mask_coordinates:
# Join elements of the row into a string with spaces in between and write to the file
file.write(" ".join(map(str, row)) + "\n")
# Save train image
train_image_filepath = os.path.join(app.config['YOLO_TRAIN_IMAGE_FOLDER'], filename)
shutil.copy(image_path, train_image_filepath)
train_image_url = url_for('static', filename=f'yolo/dataset_yolo/train/images/{filename}')
# Save result
result_filename = f'segmented_{filename}'
result_path = os.path.join(app.config['SAM_RESULT_FOLDER'], result_filename)
plt.imsave(result_path, combined_image)
logger.info("Mask generation completed successfully")
return jsonify({
'status': 'success',
'train_image_url':train_image_url,
'result_path': url_for('static', filename=f'sam/sam_results/{result_filename}')
})
except Exception as e:
logger.error(f"Mask generation error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/classify', methods=['POST'])
def classify():
"""
Classify an image and return the classification result, area data, and the annotated image.
Request body should contain a JSON object with a single key 'filename' specifying the image file to be classified.
Returns a JSON object with the following keys:
- status: 'success' if the classification is successful, 'error' if there is an error.
- result_path: URL of the annotated image.
- area_data: a list of dictionaries containing the area and overlap statistics for each component.
- area_data_path: URL of the JSON file containing the area data.
If there is an error, returns a JSON object with a single key 'error' containing the error message.
"""
try:
data = request.json
filename = data.get('filename', '')
if not filename:
return jsonify({'error': 'No filename provided'}), 400
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if not os.path.exists(image_path):
return jsonify({'error': 'Image file not found'}), 404
# Read image
image = cv2.imread(image_path)
if image is None:
return jsonify({'error': 'Failed to load image'}), 500
results = model(image)
result = results[0]
component_masks = []
void_masks = []
# Extract masks and labels from results
for mask, label in zip(result.masks.data, result.boxes.cls):
mask_array = mask.cpu().numpy().astype(bool) # Convert to a binary mask (boolean array)
if label == 1: # Assuming label '1' represents void
void_masks.append(mask_array)
elif label == 0: # Assuming label '0' represents component
component_masks.append(mask_array)
# Calculate area and overlap statistics
area_data = []
for i, component_mask in enumerate(component_masks):
component_area = np.sum(component_mask).item() # Total component area in pixels
void_area_within_component = 0
max_void_area_percentage = 0
# Calculate overlap of each void mask with the component mask
for void_mask in void_masks:
overlap_area = np.sum(void_mask & component_mask).item() # Overlapping area
void_area_within_component += overlap_area
void_area_percentage = (overlap_area / component_area) * 100 if component_area > 0 else 0
max_void_area_percentage = max(max_void_area_percentage, void_area_percentage)
# Append data for this component
area_data.append({
"Image": filename,
'Component': f'Component {i+1}',
'Area': component_area,
'Void Area (pixels)': void_area_within_component,
'Void Area %': void_area_within_component / component_area * 100 if component_area > 0 else 0,
'Max Void Area %': max_void_area_percentage
})
area_data_filename = f'area_data_{filename.split("/")[-1]}.json' # Create a unique filename
area_data_path = os.path.join(app.config['AREA_DATA_FOLDER'], area_data_filename)
with open(area_data_path, 'w') as json_file:
json.dump(area_data, json_file, indent=4)
annotated_image = result.plot()
output_filename = f'output_{filename}'
output_image_path = os.path.join(app.config['YOLO_RESULT_FOLDER'], output_filename)
plt.imsave(output_image_path, annotated_image)
logger.info("Classification completed successfully")
return jsonify({
'status': 'success',
'result_path': url_for('static', filename=f'yolo/yolo_results/{output_filename}'),
'area_data': area_data,
'area_data_path': url_for('static', filename=f'yolo/area_data/{area_data_filename}')
})
except Exception as e:
logger.error(f"Classification error: {str(e)}")
return jsonify({'error': str(e)}), 500
retraining_status = {
'status': 'idle',
'progress': None,
'message': None
}
@app.route('/start_retraining', methods=['GET', 'POST'])
def start_retraining():
"""
Start the model retraining process.
If the request is a POST, start the model retraining process in a separate thread.
If the request is a GET, render the retraining page.
Returns:
A JSON response with the status of the retraining process, or a rendered HTML page.
"""
if request.method == 'POST':
# Reset status
global retraining_status
retraining_status['status'] = 'in_progress'
retraining_status['progress'] = 'Initializing'
# Start retraining in a separate thread
threading.Thread(target=retrain_model_fn).start()
return jsonify({'status': 'started'})
else:
# GET request - render the retraining page
return render_template('retrain.html')
# Event handler for client connection
@socketio.on('connect')
def handle_connect():
print('Client connected')
if __name__ == '__main__':
app.run(port=5001, debug=True)