import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('itlarni_zoti_klassifikatsiyasi.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Dog type Classifier' description = 'A dog type classifier trained on random images from internet with fastai. Created as a demo for Gradio and HuggingFace Spaces.' #examples = ['GrizzlyBearJeanBeaufort.jpg'] gr.Interface(fn = predict, inputs = 'image', outputs = 'label', title = title, description = description #examples = examples ).launch()