import gradio as gr from fastai.vision.all import * import skimage #import pathlib #temp = pathlib.PosixPath #pathlib.PosixPath = pathlib.WindowsPath learn = load_learner('eksport1.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Potato Disease Classifier' description = 'A potato disease classifier trained on random images from internet with fastai. Created as a demo for Gradio and HuggingFace Spaces.' examples = ['early_blight.JPG', 'healthy.JPG', 'late_blight.JPG'] gr.Interface(fn = predict, inputs = 'image', outputs = 'label', title = title, description = description, examples = examples).launch()