Spaces:
Running
Running
# SPDX-FileCopyrightText: 2025 Idiap Research Institute | |
# SPDX-FileContributor: Hatef Otroshi <[email protected]> | |
# SPDX-License-Identifier: MIT | |
"""HyperFace demo""" | |
from __future__ import annotations | |
from pathlib import Path | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from huggingface_hub import hf_hub_download | |
from title import title_css, title_with_logo | |
from face_alignment import align | |
from PIL import Image | |
import net | |
model_configs = { | |
"HyperFace-10k-LDM": { | |
"repo": "idiap/HyperFace-10k-LDM", | |
"filename": "HyperFace_10k_LDM.ckpt", | |
}, | |
"HyperFace-10k-StyleGAN": { | |
"repo": "idiap/HyperFace-10k-StyleGAN", | |
"filename": "HyperFace_10k_StyleGAN.ckpt", | |
}, | |
"HyperFace-50k-StyleGAN": { | |
"repo": "idiap/HyperFace-50k-StyleGAN", | |
"filename": "HyperFace_50k_StyleGAN.ckpt", | |
}, | |
} | |
# βββββββββββββββββββββββββββββββ | |
# Data & models | |
# βββββββββββββββββββββββββββββββ | |
DATA_DIR = Path("data") | |
EXTS = (".jpg", ".jpeg", ".png", ".bmp", ".webp") | |
PRELOADED = sorted(p for p in DATA_DIR.iterdir() if p.suffix.lower() in EXTS) | |
HYPERFACE_MODELS = [ | |
"HyperFace-10k-LDM", | |
"HyperFace-10k-StyleGAN", | |
"HyperFace-50k-StyleGAN", | |
] | |
# βββββββββββββββββββββββββββββββ | |
# Styling (orange palette) | |
# βββββββββββββββββββββββββββββββ | |
PRIMARY = "#F97316" | |
PRIMARY_DARK = "#C2410C" | |
ACCENT_LIGHT = "#FFEAD2" | |
BG_LIGHT = "#FFFBF7" | |
CARD_BG_DARK = "#473f38" | |
BG_DARK = "#332a22" | |
TEXT_DARK = "#0F172A" | |
TEXT_LIGHT = "#f8fafc" | |
CSS = f""" | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700;800&display=swap'); | |
/* βββ palette βββββββββββββββββββββββββββββββββββββββββββββ */ | |
body, .gradio-container {{ | |
font-family: 'Inter', sans-serif; | |
background: {BG_LIGHT}; | |
color: {TEXT_DARK}; | |
}} | |
a {{ | |
color: {PRIMARY}; | |
text-decoration: none; | |
font-weight: 600; | |
}} | |
a:hover {{ color: {PRIMARY_DARK}; }} | |
/* βββ headline ββββββββββββββββββββββββββββββββββββββββββββ */ | |
#titlebar {{ | |
text-align: center; | |
margin-top: 2.4rem; | |
margin-bottom: .9rem; | |
}} | |
/* βββ card look βββββββββββββββββββββββββββββββββββββββββββ */ | |
.gr-block, | |
.gr-box, | |
.gr-row, | |
#cite-wrapper {{ | |
border: 1px solid #F8C89B; | |
border-radius: 10px; | |
background: #fff; | |
box-shadow: 0 3px 6px rgba(0, 0, 0, .05); | |
}} | |
.gr-gallery-item {{ background: #fff; }} | |
/* βββ controls / inputs βββββββββββββββββββββββββββββββββββ */ | |
.gr-button-primary, | |
#copy-btn {{ | |
background: linear-gradient(90deg, {PRIMARY} 0%, {PRIMARY_DARK} 100%); | |
border: none; | |
color: #fff; | |
border-radius: 6px; | |
font-weight: 600; | |
transition: transform .12s ease, box-shadow .12s ease; | |
}} | |
.gr-button-primary:hover, | |
#copy-btn:hover {{ | |
transform: translateY(-2px); | |
box-shadow: 0 4px 12px rgba(249, 115, 22, .35); | |
}} | |
.gr-dropdown input {{ | |
border: 1px solid {PRIMARY}99; | |
}} | |
.preview img, | |
.preview canvas {{ object-fit: contain !important; }} | |
/* βββ hero section βββββββββββββββββββββββββββββββββββββββ */ | |
#hero-wrapper {{ text-align: center; }} | |
#hero-badge {{ | |
display: inline-block; | |
padding: .85rem 1.2rem; | |
border-radius: 8px; | |
background: {ACCENT_LIGHT}; | |
border: 1px solid {PRIMARY}55; | |
font-size: .95rem; | |
font-weight: 600; | |
margin-bottom: .5rem; | |
}} | |
#hero-links {{ | |
font-size: .95rem; | |
font-weight: 600; | |
margin-bottom: 1.6rem; | |
}} | |
#hero-links img {{ | |
height: 22px; | |
vertical-align: middle; | |
margin-left: .55rem; | |
}} | |
/* βββ score area βββββββββββββββββββββββββββββββββββββββββ */ | |
#score-area {{ | |
text-align: center; | |
}} | |
.title-container {{ | |
display: flex; | |
align-items: center; | |
gap: 12px; | |
justify-content: center; | |
margin-bottom: 10px; | |
text-align: center; | |
}} | |
.match-badge {{ | |
display: inline-block; | |
padding: .35rem .9rem; | |
border-radius: 9999px; | |
font-weight: 600; | |
font-size: 1.25rem; | |
}} | |
/* βββ citation card ββββββββββββββββββββββββββββββββββββββ */ | |
#cite-wrapper {{ | |
position: relative; | |
padding: .9rem 1rem; | |
margin-top: 2rem; | |
}} | |
#cite-wrapper code {{ | |
font-family: SFMono-Regular, Consolas, monospace; | |
font-size: .84rem; | |
white-space: pre-wrap; | |
color: {TEXT_DARK}; | |
}} | |
#copy-btn {{ | |
position: absolute; | |
top: .55rem; | |
right: .6rem; | |
padding: .18rem .7rem; | |
font-size: .72rem; | |
line-height: 1; | |
}} | |
/* βββ dark mode ββββββββββββββββββββββββββββββββββββββ */ | |
.dark body, | |
.dark .gradio-container {{ | |
background-color: {BG_DARK}; | |
color: #e5e7eb; | |
}} | |
.dark .gr-block, | |
.dark .gr-box, | |
.dark .gr-row {{ | |
background-color: {BG_DARK}; | |
border: 1px solid #4b5563; | |
}} | |
.dark .gr-dropdown input {{ | |
background-color: {BG_DARK}; | |
color: #f1f5f9; | |
border: 1px solid {PRIMARY}aa; | |
}} | |
.dark #hero-badge {{ | |
background: #334155; | |
border: 1px solid {PRIMARY}55; | |
color: #fefefe; | |
}} | |
.dark #cite-wrapper {{ | |
background-color: {CARD_BG_DARK}; | |
}} | |
.dark #bibtex {{ | |
color: {TEXT_LIGHT} !important; | |
}} | |
.dark .card {{ | |
background-color: {CARD_BG_DARK}; | |
}} | |
/* βββ switch logo for light/dark theme βββββββββββββββ */ | |
.logo-dark {{ display: none; }} | |
.dark .logo-light {{ display: none; }} | |
.dark .logo-dark {{ display: inline; }} | |
""" | |
FULL_CSS = CSS + title_css(TEXT_DARK, PRIMARY, PRIMARY_DARK, TEXT_LIGHT) | |
# βββββββββββββββββββββββββββββββ | |
# Torch / transforms | |
# βββββββββββββββββββββββββββββββ | |
def to_input(pil_rgb_image): | |
np_img = np.array(pil_rgb_image) | |
brg_img = ((np_img[:,:,::-1] / 255.) - 0.5) / 0.5 | |
tensor = torch.tensor([brg_img.transpose(2,0,1)]).float() | |
return tensor | |
def get_face_rec_model(name: str) -> torch.nn.Module: | |
if name not in get_face_rec_model.cache: | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_path = hf_hub_download( | |
repo_id=model_configs[name]["repo"], | |
filename=model_configs[name]["filename"], | |
local_dir="models", | |
) | |
model = net.build_model(model_name='ir_50') | |
statedict = torch.load(model_path, map_location=device)['state_dict'] | |
model_statedict = {key[6:]:val for key, val in statedict.items() if key.startswith('model.')} | |
model.load_state_dict(model_statedict) | |
model.eval() | |
model.to(device) | |
get_face_rec_model.cache[name] = model | |
return get_face_rec_model.cache[name] | |
get_face_rec_model.cache = {} | |
# βββββββββββββββββββββββββββββββ | |
# Helpers | |
# βββββββββββββββββββββββββββββββ | |
def _as_rgb(path: Path) -> np.ndarray: | |
return cv2.cvtColor(cv2.imread(str(path)), cv2.COLOR_BGR2RGB) | |
def badge(text: str, colour: str) -> str: | |
return f'<div class="match-badge" style="background:{colour}22;color:{colour}">{text}</div>' | |
# βββββββββββββββββββββββββββββββ | |
# Face comparison | |
# βββββββββββββββββββββββββββββββ | |
def compare(img_left, img_right, variant): | |
if img_left is None and img_right is None: | |
return None, None, badge("Please upload/select two face images", "#DC2626") | |
if img_left is None: | |
return None, None, badge("Please upload/select a face image for Image A (left)", "#DC2626") | |
if img_right is None: | |
return None, None, badge("Please upload/select a face image for Image B (right)", "#DC2626") | |
img_left = Image.fromarray(img_left).convert('RGB') | |
img_right = Image.fromarray(img_right).convert('RGB') | |
crop_a, crop_b = align.get_aligned_face(None, img_left), align.get_aligned_face(None, img_right) | |
if crop_a is None and crop_b is None: | |
return None, None, badge("No face detected", "#DC2626") | |
if crop_a is None: | |
return None, None, badge("No face was detected in Image A (left)", "#DC2626") | |
if crop_b is None: | |
return None, None, badge("No face was detected in Image B (right)", "#DC2626") | |
mdl = get_face_rec_model(variant) | |
dev = next(mdl.parameters()).device | |
with torch.no_grad(): | |
ea = mdl(to_input(crop_a).to(dev))[0] | |
eb = mdl(to_input(crop_b).to(dev))[0] | |
pct = float(F.cosine_similarity(ea, eb).item() * 100) | |
pct = max(0, min(100, pct)) | |
colour = "#15803D" if pct >= 70 else "#CA8A04" if pct >= 40 else "#DC2626" | |
return crop_a, crop_b, badge(f"{pct:.2f}% match", colour) | |
# βββββββββββββββββββββββββββββββ | |
# Static HTML | |
# βββββββββββββββββββββββββββββββ | |
TITLE_HTML = title_with_logo( | |
"""<span class="brand">HyperFace:</span> Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere | |
""" | |
) | |
HERO_HTML = f""" | |
<div id="hero-wrapper"> | |
<div id="hero-links"> | |
<a href="https://www.idiap.ch/paper/hyperface/">Project</a> β’ | |
<a href="https://openreview.net/pdf?id=4YzVF9isgD">Paper</a> β’ | |
<a href="https://arxiv.org/abs/2411.08470v2">arXiv</a> β’ | |
<a href="https://gitlab.idiap.ch/biometric/code.iclr2025_hyperface">Code</a> β’ | |
<a href="https://huggingface.co/collections/Idiap/hyperface-682485119ccbd3ba5c42bde1">Models</a> β’ | |
<a href="https://zenodo.org/records/15087238">Dataset</a> | |
</div> | |
</div> | |
""" | |
CITATION_HTML = """ | |
<div id="cite-wrapper"> | |
<button id="copy-btn" onclick=" | |
navigator.clipboard.writeText(document.getElementById('bibtex').innerText) | |
.then(()=>{this.textContent='βοΈ';setTimeout(()=>this.textContent='Copy',1500);}); | |
">Copy</button> | |
<code id="bibtex"> | |
@inproceedings{shahreza2025hyperface, | |
title={HyperFace: Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere}, | |
author={Hatef Otroshi Shahreza and S{\'e}bastien Marcel}, | |
booktitle={The Thirteenth International Conference on Learning Representations}, | |
year={2025} | |
}</code> | |
</div> | |
""" | |
# βββββββββββββββββββββββββββββββ | |
# Gradio UI | |
# βββββββββββββββββββββββββββββββ | |
with gr.Blocks(css=FULL_CSS, title="HyperFace Demo") as demo: | |
gr.HTML(TITLE_HTML, elem_id="titlebar") | |
gr.HTML(HERO_HTML) | |
with gr.Row(): | |
gal_a = gr.Gallery( | |
PRELOADED, | |
columns=[5], | |
height=120, | |
label="Image A", | |
object_fit="contain", | |
elem_classes="card", | |
) | |
gal_b = gr.Gallery( | |
PRELOADED, | |
columns=[5], | |
height=120, | |
label="Image B", | |
object_fit="contain", | |
elem_classes="card", | |
) | |
with gr.Row(): | |
img_a = gr.Image( | |
type="numpy", | |
height=300, | |
label="Image A (click or drag-drop)", | |
interactive=True, | |
elem_classes="preview card", | |
) | |
img_b = gr.Image( | |
type="numpy", | |
height=300, | |
label="Image B (click or drag-drop)", | |
interactive=True, | |
elem_classes="preview card", | |
) | |
def _fill(evt: gr.SelectData): | |
return _as_rgb(PRELOADED[evt.index]) if evt.index is not None else None | |
gal_a.select(_fill, outputs=img_a) | |
gal_b.select(_fill, outputs=img_b) | |
variant_dd = gr.Dropdown( | |
HYPERFACE_MODELS, value="HyperFace-10k-LDM", label="Model variant", elem_classes="card" | |
) | |
btn = gr.Button("Compare", variant="primary") | |
with gr.Row(): | |
out_a = gr.Image(label="Aligned A (112Γ112)", elem_classes="card") | |
out_b = gr.Image(label="Aligned B (112Γ112)", elem_classes="card") | |
score_html = gr.HTML(elem_id="score-area") | |
btn.click(compare, [img_a, img_b, variant_dd], [out_a, out_b, score_html]) | |
gr.HTML(CITATION_HTML) | |
# βββββββββββββββββββββββββββββββ | |
if __name__ == "__main__": | |
demo.launch(share=True) | |