from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * import PIL import torchvision.transforms as transforms #repo_id = "Ignaciobfp/segmentacion-dron-marras" #learner = from_pretrained_fastai(repo_id) device = torch.device("cpu") #model = learner.model model = torch.jit.load("pr3.pth") model = model.cpu() def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): img_pil = PIL.Image.fromarray(img, 'RGB') image = transforms.Resize((400,400))(img_pil) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1]=255 mask=np.reshape(mask,(400,400)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs=gr.outputs.Image(type="pil"), examples=['examplesB/color_180.jpg', 'examplesB/color_179.jpg', 'examplesB/color_156.jpg', 'examplesB/color_155.jpg', 'examplesB/color_154.jpg']).launch(share=False)