File size: 1,831 Bytes
acd1613
 
 
 
 
de6e097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd1613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697f288
acd1613
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
import PIL
import torchvision.transforms as transforms

class TargetMaskConvertTransform(ItemTransform):
    def __init__(self): 
        pass
    def encodes(self, x):
        img,mask = x
        
        #Convert to array
        mask = np.array(mask)
        
        mask[mask!=255]=0
        # Change 255 for 1
        mask[mask==255]=1
        
        
        # Back to PILMask
        mask = PILMask.create(mask)
        return img, mask

def transform_image(image):
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    return my_transforms(image_aux).unsqueeze(0).to(device)

repo_id = "Ignaciobfp/segmentacion-dron-marras"

learner = from_pretrained_fastai(repo_id)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = learner.model
model = model.cpu()



# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    #img = PILImage.create(img)
    image = transforms.Resize((400,400))(img)
    tensor = transform_image(image=image)
    model.to(device)
    with torch.no_grad():
        outputs = model(tensor)
    outputs = torch.argmax(outputs,1)
    mask = np.array(outputs.cpu())
    mask[mask==1]=255
    mask=np.reshape(mask,(400,400))
    return mask
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs="image", examples=['examples/1CA SUR_1200_800.png', 'examples/1CA SUR_4000_1200.png', 'examples/1CA SUR_4800_2000.png']).launch(share=False)