Spaces:
Sleeping
Sleeping
Commit
路
5c6cca8
1
Parent(s):
8fed3e0
Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,12 @@ from fastai.vision.all import *
|
|
4 |
import PIL
|
5 |
import torchvision.transforms as transforms
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#Convert to array
|
14 |
-
mask = np.array(mask)
|
15 |
-
|
16 |
-
mask[mask!=255]=0
|
17 |
-
# Change 255 for 1
|
18 |
-
mask[mask==255]=1
|
19 |
-
|
20 |
-
|
21 |
-
# Back to PILMask
|
22 |
-
mask = PILMask.create(mask)
|
23 |
-
return img, mask
|
24 |
|
25 |
def transform_image(image):
|
26 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
@@ -30,20 +19,11 @@ def transform_image(image):
|
|
30 |
image_aux = image
|
31 |
return my_transforms(image_aux).unsqueeze(0).to(device)
|
32 |
|
33 |
-
repo_id = "Ignaciobfp/segmentacion-dron-marras"
|
34 |
-
|
35 |
-
learner = from_pretrained_fastai(repo_id)
|
36 |
-
|
37 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
-
model = learner.model
|
39 |
-
model = model.cpu()
|
40 |
-
|
41 |
-
|
42 |
|
43 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
44 |
def predict(img):
|
45 |
-
|
46 |
-
image = transforms.Resize((400,400))(
|
47 |
tensor = transform_image(image=image)
|
48 |
model.to(device)
|
49 |
with torch.no_grad():
|
@@ -52,7 +32,7 @@ def predict(img):
|
|
52 |
mask = np.array(outputs.cpu())
|
53 |
mask[mask==1]=255
|
54 |
mask=np.reshape(mask,(400,400))
|
55 |
-
return mask
|
56 |
|
57 |
# Creamos la interfaz y la lanzamos.
|
58 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs="image", examples=['examples/1CA SUR_1200_800.png', 'examples/1CA SUR_4000_1200.png', 'examples/1CA SUR_4800_2000.png']).launch(share=False)
|
|
|
4 |
import PIL
|
5 |
import torchvision.transforms as transforms
|
6 |
|
7 |
+
repo_id = "Ignaciobfp/segmentacion-dron-marras"
|
8 |
+
learner = from_pretrained_fastai(repo_id)
|
9 |
+
|
10 |
+
device = torch.device("cpu")
|
11 |
+
model = learner.model
|
12 |
+
model = model.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def transform_image(image):
|
15 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
|
|
19 |
image_aux = image
|
20 |
return my_transforms(image_aux).unsqueeze(0).to(device)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
24 |
def predict(img):
|
25 |
+
img_pil = PIL.Image.fromarray(img, 'RGB')
|
26 |
+
image = transforms.Resize((400,400))(img_pil)
|
27 |
tensor = transform_image(image=image)
|
28 |
model.to(device)
|
29 |
with torch.no_grad():
|
|
|
32 |
mask = np.array(outputs.cpu())
|
33 |
mask[mask==1]=255
|
34 |
mask=np.reshape(mask,(400,400))
|
35 |
+
return Image.fromarray(mask.astype('uint8')
|
36 |
|
37 |
# Creamos la interfaz y la lanzamos.
|
38 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs="image", examples=['examples/1CA SUR_1200_800.png', 'examples/1CA SUR_4000_1200.png', 'examples/1CA SUR_4800_2000.png']).launch(share=False)
|