from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * import PIL import torchvision.transforms as transforms def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) repo_id = "Ignaciobfp/segmentacion-dron-marras" learner = from_pretrained_fastai(repo_id) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = learner.model model = model.cpu() # Definimos una función que se encarga de llevar a cabo las predicciones def predict(img): #img = PILImage.create(img) image = transforms.Resize((400,400))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1]=255 mask=np.reshape(mask,(400,400)) return mask # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs="image", examples=['examples/1CA SUR_1200_800.png', 'examples/1CA SUR_4000_1200.png', 'examples/1CA SUR_4800_2000.png']).launch(share=False)