Spaces:
Sleeping
Sleeping
Commit
·
16d8457
1
Parent(s):
d43420e
pushing files
Browse files- .gitattributes +3 -0
- Emotions/disgust/dis_1.png +3 -0
- Emotions/disgust/dis_2.png +3 -0
- Emotions/joy_1.png +3 -0
- Emotions/sad/sad_1.png +3 -0
- Emotions/sad/sad_2.png +3 -0
- Emotions/sad/sad_3.png +3 -0
- Emotions/stylized_output.jpg +0 -0
- Models_Class/LSTMModel.py +24 -0
- Models_Class/NST_class.py +31 -0
- Models_Class/__pycache__/LSTMModel.cpython-311.pyc +0 -0
- Models_Class/__pycache__/LSTMModel.cpython-312.pyc +0 -0
- Models_Class/__pycache__/NST_class.cpython-311.pyc +0 -0
- Painters/Pablo Picasso/Dora Maar with Cat (1941).png +3 -0
- Painters/Pablo Picasso/The Weeping Woman (1937).png +3 -0
- Painters/Pablo Picasso/Three Musicians (1921).png +3 -0
- Painters/Salvador Dalí/Sleep (1937).png +3 -0
- Painters/Salvador Dalí/Swans Reflecting Elephants (1937).png +3 -0
- Painters/Salvador Dalí/The Persistence of Memory (1931).png +3 -0
- Painters/Vincent van Gogh/Sunflowers (1888).png +3 -0
- Painters/Vincent van Gogh/The Potato Eaters (1885).png +3 -0
- Painters/Vincent van Gogh/The Starry Night (1889).png +3 -0
- Src/Inference.py +8 -0
- Src/Processing.py +17 -0
- Src/Processing_img.py +110 -0
- Src/__init__.py +0 -0
- Src/__pycache__/Inference.cpython-311.pyc +0 -0
- Src/__pycache__/Inference.cpython-312.pyc +0 -0
- Src/__pycache__/Processing.cpython-311.pyc +0 -0
- Src/__pycache__/Processing.cpython-312.pyc +0 -0
- Src/__pycache__/Processing_img.cpython-311.pyc +0 -0
- Src/__pycache__/__init__.cpython-311.pyc +0 -0
- Src/__pycache__/__init__.cpython-312.pyc +0 -0
- main.py +519 -0
- stylized_output.jpg +0 -0
.gitattributes
CHANGED
@@ -33,4 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
36 |
*.png filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/lstm_emotion_model_state.pth filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Datasets filter=lfs diff=lfs merge=lfs -text
|
39 |
*.png filter=lfs diff=lfs merge=lfs -text
|
Emotions/disgust/dis_1.png
ADDED
![]() |
Git LFS Details
|
Emotions/disgust/dis_2.png
ADDED
![]() |
Git LFS Details
|
Emotions/joy_1.png
ADDED
![]() |
Git LFS Details
|
Emotions/sad/sad_1.png
ADDED
![]() |
Git LFS Details
|
Emotions/sad/sad_2.png
ADDED
![]() |
Git LFS Details
|
Emotions/sad/sad_3.png
ADDED
![]() |
Git LFS Details
|
Emotions/stylized_output.jpg
ADDED
![]() |
Models_Class/LSTMModel.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class LSTMModel(nn.Module):
|
5 |
+
## constructor
|
6 |
+
def __init__(self, input_size, hidden_size, output_size, num_layers):
|
7 |
+
super(LSTMModel, self).__init__()
|
8 |
+
self.input_size = input_size
|
9 |
+
self.hidden_size = hidden_size
|
10 |
+
self.output_size = output_size
|
11 |
+
self.num_layers = num_layers
|
12 |
+
self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
|
13 |
+
self.fc = nn.Linear(self.hidden_size, self.output_size)
|
14 |
+
|
15 |
+
def forward(self,x, h0=None, c0=None):
|
16 |
+
# hidden and state vectors h0 and c0
|
17 |
+
if h0 is None or c0 is None:
|
18 |
+
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
|
19 |
+
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
|
20 |
+
|
21 |
+
out, (hn, cn) = self.lstm(x, (h0, c0))
|
22 |
+
out = self.fc(out)
|
23 |
+
return out, (hn, cn)
|
24 |
+
|
Models_Class/NST_class.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
def gram_matrix(input):
|
4 |
+
a, b, c, d = input.size()
|
5 |
+
features = input.view(a * b, c * d)
|
6 |
+
G = torch.mm(features, features.t())
|
7 |
+
return G.div(a * b * c * d)
|
8 |
+
class ContentLoss(nn.Module):
|
9 |
+
def __init__(self, target):
|
10 |
+
super().__init__()
|
11 |
+
self.target = target.detach()
|
12 |
+
def forward(self, input):
|
13 |
+
self.loss = nn.functional.mse_loss(input, self.target)
|
14 |
+
return input
|
15 |
+
|
16 |
+
class StyleLoss(nn.Module):
|
17 |
+
def __init__(self, target_feature):
|
18 |
+
super().__init__()
|
19 |
+
self.target = gram_matrix(target_feature).detach()
|
20 |
+
def forward(self, input):
|
21 |
+
G = gram_matrix(input)
|
22 |
+
self.loss = nn.functional.mse_loss(G, self.target)
|
23 |
+
return input
|
24 |
+
|
25 |
+
class Normalization(nn.Module):
|
26 |
+
def __init__(self, mean, std):
|
27 |
+
super().__init__()
|
28 |
+
self.mean = mean.view(-1, 1, 1)
|
29 |
+
self.std = std.view(-1, 1, 1)
|
30 |
+
def forward(self, img):
|
31 |
+
return (img - self.mean) / self.std
|
Models_Class/__pycache__/LSTMModel.cpython-311.pyc
ADDED
Binary file (1.93 kB). View file
|
|
Models_Class/__pycache__/LSTMModel.cpython-312.pyc
ADDED
Binary file (1.81 kB). View file
|
|
Models_Class/__pycache__/NST_class.cpython-311.pyc
ADDED
Binary file (3.49 kB). View file
|
|
Painters/Pablo Picasso/Dora Maar with Cat (1941).png
ADDED
![]() |
Git LFS Details
|
Painters/Pablo Picasso/The Weeping Woman (1937).png
ADDED
![]() |
Git LFS Details
|
Painters/Pablo Picasso/Three Musicians (1921).png
ADDED
![]() |
Git LFS Details
|
Painters/Salvador Dalí/Sleep (1937).png
ADDED
![]() |
Git LFS Details
|
Painters/Salvador Dalí/Swans Reflecting Elephants (1937).png
ADDED
![]() |
Git LFS Details
|
Painters/Salvador Dalí/The Persistence of Memory (1931).png
ADDED
![]() |
Git LFS Details
|
Painters/Vincent van Gogh/Sunflowers (1888).png
ADDED
![]() |
Git LFS Details
|
Painters/Vincent van Gogh/The Potato Eaters (1885).png
ADDED
![]() |
Git LFS Details
|
Painters/Vincent van Gogh/The Starry Night (1889).png
ADDED
![]() |
Git LFS Details
|
Src/Inference.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Start here with the inference procedure
|
2 |
+
import torch
|
3 |
+
from Models_Class.LSTMModel import LSTMModel
|
4 |
+
|
5 |
+
def load_model(model_path, input_size, hidden_size, output_size, num_layers):
|
6 |
+
loaded_model = LSTMModel(input_size, hidden_size, output_size, num_layers)
|
7 |
+
loaded_model.load_state_dict(torch.load(model_path))
|
8 |
+
return loaded_model
|
Src/Processing.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
emotion_list = ["0", "1", "2", "3", "4", "5", "6"]
|
4 |
+
|
5 |
+
|
6 |
+
def load_data(psd_file_pth):
|
7 |
+
np_data = np.load(psd_file_pth, allow_pickle=True).item()["psd"]
|
8 |
+
return np_data
|
9 |
+
|
10 |
+
|
11 |
+
def process_data(np_data):
|
12 |
+
#Swap axes
|
13 |
+
swapped_data = np.swapaxes(np_data, 0, 1)
|
14 |
+
## reshape data
|
15 |
+
reshape_data = swapped_data.reshape(630, 320)
|
16 |
+
return reshape_data
|
17 |
+
|
Src/Processing_img.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torch
|
3 |
+
import torch.optim as optim
|
4 |
+
from torchvision import transforms
|
5 |
+
import torch.nn as nn
|
6 |
+
from Models_Class.NST_class import (
|
7 |
+
ContentLoss,
|
8 |
+
Normalization,
|
9 |
+
StyleLoss,
|
10 |
+
)
|
11 |
+
|
12 |
+
import copy
|
13 |
+
|
14 |
+
style_weight = 1e8
|
15 |
+
content_weight = 1e1
|
16 |
+
def image_loader(image_path, loader, device):
|
17 |
+
image = Image.open(image_path).convert('RGB')
|
18 |
+
image = loader(image).unsqueeze(0)
|
19 |
+
return image.to(device, torch.float)
|
20 |
+
|
21 |
+
def save_image(tensor, path="output.png"):
|
22 |
+
image = tensor.cpu().clone()
|
23 |
+
image = image.squeeze(0)
|
24 |
+
image = transforms.ToPILImage()(image)
|
25 |
+
image.save(path)
|
26 |
+
|
27 |
+
def gram_matrix(input):
|
28 |
+
a, b, c, d = input.size()
|
29 |
+
features = input.view(a * b, c * d)
|
30 |
+
G = torch.mm(features, features.t())
|
31 |
+
return G.div(a * b * c * d)
|
32 |
+
|
33 |
+
|
34 |
+
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
|
35 |
+
style_img, content_img, content_layers, style_layers, device):
|
36 |
+
cnn = copy.deepcopy(cnn)
|
37 |
+
normalization = Normalization(normalization_mean, normalization_std).to(device)
|
38 |
+
content_losses = []
|
39 |
+
style_losses = []
|
40 |
+
model = nn.Sequential(normalization)
|
41 |
+
|
42 |
+
i = 0
|
43 |
+
for layer in cnn.children():
|
44 |
+
if isinstance(layer, nn.Conv2d):
|
45 |
+
i += 1
|
46 |
+
name = f'conv_{i}'
|
47 |
+
elif isinstance(layer, nn.ReLU):
|
48 |
+
name = f'relu_{i}'
|
49 |
+
layer = nn.ReLU(inplace=False)
|
50 |
+
elif isinstance(layer, nn.MaxPool2d):
|
51 |
+
name = f'pool_{i}'
|
52 |
+
elif isinstance(layer, nn.BatchNorm2d):
|
53 |
+
name = f'bn_{i}'
|
54 |
+
else:
|
55 |
+
raise RuntimeError(f'Unrecognized layer: {layer.__class__.__name__}')
|
56 |
+
|
57 |
+
model.add_module(name, layer)
|
58 |
+
|
59 |
+
if name in content_layers:
|
60 |
+
target = model(content_img).detach()
|
61 |
+
content_loss = ContentLoss(target)
|
62 |
+
model.add_module(f"content_loss_{i}", content_loss)
|
63 |
+
content_losses.append(content_loss)
|
64 |
+
|
65 |
+
if name in style_layers:
|
66 |
+
target_feature = model(style_img).detach()
|
67 |
+
style_loss = StyleLoss(target_feature)
|
68 |
+
model.add_module(f"style_loss_{i}", style_loss)
|
69 |
+
style_losses.append(style_loss)
|
70 |
+
|
71 |
+
for i in range(len(model) - 1, -1, -1):
|
72 |
+
if isinstance(model[i], (ContentLoss, StyleLoss)):
|
73 |
+
break
|
74 |
+
model = model[:i+1]
|
75 |
+
return model, style_losses, content_losses
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def run_style_transfer(cnn, normalization_mean, normalization_std,
|
80 |
+
content_img, style_img, input_img,content_layers, style_layers, device, num_steps=300):
|
81 |
+
print("Building the style transfer model..")
|
82 |
+
model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std,
|
83 |
+
style_img, content_img,content_layers, style_layers, device )
|
84 |
+
optimizer = optim.LBFGS([input_img.requires_grad_()])
|
85 |
+
|
86 |
+
print("Optimizing..")
|
87 |
+
run = [0]
|
88 |
+
while run[0] <= num_steps:
|
89 |
+
def closure():
|
90 |
+
input_img.data.clamp_(0, 1)
|
91 |
+
optimizer.zero_grad()
|
92 |
+
model(input_img)
|
93 |
+
style_score = sum(sl.loss for sl in style_losses)
|
94 |
+
content_score = sum(cl.loss for cl in content_losses)
|
95 |
+
loss = style_weight * style_score + content_weight * content_score
|
96 |
+
loss.backward()
|
97 |
+
|
98 |
+
if run[0] % 50 == 0:
|
99 |
+
print(f"Step {run[0]}:")
|
100 |
+
print(f" Style Loss: {style_score.item():.4f}")
|
101 |
+
print(f" Content Loss: {content_score.item():.4f}")
|
102 |
+
print(f" Total Loss: {loss.item():.4f}\n")
|
103 |
+
|
104 |
+
run[0] += 1
|
105 |
+
return loss
|
106 |
+
|
107 |
+
optimizer.step(closure)
|
108 |
+
|
109 |
+
input_img.data.clamp_(0, 1)
|
110 |
+
return input_img
|
Src/__init__.py
ADDED
File without changes
|
Src/__pycache__/Inference.cpython-311.pyc
ADDED
Binary file (672 Bytes). View file
|
|
Src/__pycache__/Inference.cpython-312.pyc
ADDED
Binary file (605 Bytes). View file
|
|
Src/__pycache__/Processing.cpython-311.pyc
ADDED
Binary file (901 Bytes). View file
|
|
Src/__pycache__/Processing.cpython-312.pyc
ADDED
Binary file (825 Bytes). View file
|
|
Src/__pycache__/Processing_img.cpython-311.pyc
ADDED
Binary file (7.34 kB). View file
|
|
Src/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (181 Bytes). View file
|
|
Src/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (169 Bytes). View file
|
|
main.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from Src.Processing import load_data
|
6 |
+
from Src.Processing import process_data
|
7 |
+
from Src.Inference import load_model
|
8 |
+
import torchvision.models as models
|
9 |
+
from torchvision import transforms
|
10 |
+
from Src.Processing_img import (
|
11 |
+
get_style_model_and_losses,
|
12 |
+
image_loader,
|
13 |
+
run_style_transfer,
|
14 |
+
save_image,
|
15 |
+
gram_matrix
|
16 |
+
)
|
17 |
+
import torch
|
18 |
+
import tempfile
|
19 |
+
import time # For simulating delays
|
20 |
+
from PIL import Image, ImageDraw, ImageFont # Ensure ImageDraw and ImageFont are imported
|
21 |
+
import os # For file operations
|
22 |
+
import mne
|
23 |
+
import matplotlib.pyplot as plt
|
24 |
+
import io
|
25 |
+
import pyvista as pv
|
26 |
+
import matplotlib.cm as cm
|
27 |
+
import gradio as gr
|
28 |
+
pv.set_plot_theme("document") # A simple theme
|
29 |
+
pv.set_jupyter_backend('html')
|
30 |
+
|
31 |
+
# --- Data for demonstration ---
|
32 |
+
# Dummy data for Emotion Distribution Bar Chart
|
33 |
+
# In a real app, this would come from your PSD analysis
|
34 |
+
dummy_emotion_data = pd.DataFrame({
|
35 |
+
'Emotion': ['sad', 'dis', 'fear', 'neu', 'joy', 'ten', 'ins'],
|
36 |
+
'Value': [0.8, 0.6, 0.1, 0.4, 0.7, 0.2, 0.3]
|
37 |
+
})
|
38 |
+
|
39 |
+
int_to_emotion = {
|
40 |
+
0: 'sad',
|
41 |
+
1: 'dis',
|
42 |
+
2: 'fear',
|
43 |
+
3: 'neu',
|
44 |
+
4: 'joy',
|
45 |
+
5: 'ten',
|
46 |
+
6: 'ins'
|
47 |
+
}
|
48 |
+
|
49 |
+
abr_to_emotion = {
|
50 |
+
'sad': "sadness",
|
51 |
+
'dis': "disgust",
|
52 |
+
'fear': "fear",
|
53 |
+
'neu': "neutral",
|
54 |
+
'joy': "joy",
|
55 |
+
'ten': 'Tenderness',
|
56 |
+
'ins': "inspiration"
|
57 |
+
}
|
58 |
+
|
59 |
+
# --- Local Image Paths Setup for Dynamic Loading ---
|
60 |
+
# Define a base directory for all painters' images
|
61 |
+
# In Hugging Face Spaces, this would be a folder like 'Painters/' in your repository
|
62 |
+
PAINTERS_BASE_DIR = "Painters"
|
63 |
+
EMOTION_BASE_DIR = "Emotions"
|
64 |
+
model_path = "models\lstm_emotion_model_state.pth"
|
65 |
+
input_size = 320
|
66 |
+
hidden_size=50
|
67 |
+
output_size = 7
|
68 |
+
num_layers=1
|
69 |
+
|
70 |
+
# Define painters and some example "filenames" to create placeholders for
|
71 |
+
painters = ["Pablo Picasso", "Vincent van Gogh", "Salvador Dalí"]
|
72 |
+
Base_Dir = "Datasets"
|
73 |
+
|
74 |
+
# This dictionary defines what placeholder files to create and their captions.
|
75 |
+
# The actual gallery content will be read from the file system.
|
76 |
+
PAINTER_PLACEHOLDER_DATA = {
|
77 |
+
"Pablo Picasso": [
|
78 |
+
("Dora Maar with Cat (1941).png", "Dora Maar with Cat (1941)"),
|
79 |
+
("The Weeping Woman (1937).png", "The Weeping Woman (1937)"),
|
80 |
+
("Three Musicians (1921).png", "Three Musicians (1921)"),
|
81 |
+
],
|
82 |
+
"Vincent van Gogh": [
|
83 |
+
("Sunflowers (1888).png", "Sunflowers (1888)"),
|
84 |
+
("The Starry Night (1889).png", "The Starry Night (1889)"),
|
85 |
+
("The Potato Eaters (1885).png", "The Potato Eaters (1885)"),
|
86 |
+
],
|
87 |
+
"Salvador Dalí": [
|
88 |
+
("Persistence of Memory (1931).png", "Persistence of Memory (1931)"),
|
89 |
+
("Swans Reflecting Elephants (1937).png", "Swans Reflecting Elephants (1937)"),
|
90 |
+
("Sleep (1937).png", "Sleep (1937)"),
|
91 |
+
],
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
# --- Define the specific PSD files to choose from ---
|
98 |
+
predefined_psd_files = ["task-emotion_psd_1.npy", "task-emotion_psd_2.npy", "task-emotion_psd_3.npy"] # You can put full paths here if they are actual files
|
99 |
+
|
100 |
+
# --- Core Functions (Simulated) ---
|
101 |
+
|
102 |
+
def upload_psd_file(selected_file_name):
|
103 |
+
"""
|
104 |
+
Processes a selected PSD file, performs inference, and prepares emotion distribution data.
|
105 |
+
"""
|
106 |
+
if selected_file_name is None:
|
107 |
+
# If no file is selected, return a dummy plot hidden
|
108 |
+
# Return the dummy DataFrame and an empty DataFrame for the state
|
109 |
+
return gr.BarPlot(dummy_emotion_data, x="Emotion", y="Value", label="Emotion Distribution", visible=False), pd.DataFrame()
|
110 |
+
|
111 |
+
# --- Load and Process PSD Data ---
|
112 |
+
psd_file_path = os.path.join(Base_Dir, selected_file_name).replace(os.sep, '/')
|
113 |
+
|
114 |
+
# In a real scenario, you'd handle file existence check and errors for load_data
|
115 |
+
try:
|
116 |
+
global np_data
|
117 |
+
np_data = load_data(psd_file_path)
|
118 |
+
print(f"np data orig {np_data.shape}")
|
119 |
+
except FileNotFoundError:
|
120 |
+
print(f"Error: PSD file not found at {psd_file_path}")
|
121 |
+
# Return a plot with error message or just hide it
|
122 |
+
return gr.BarPlot(dummy_emotion_data, x="Emotion", y="Value", label="Emotion Distribution (Error: File not found)", visible=False), pd.DataFrame()
|
123 |
+
|
124 |
+
|
125 |
+
final_data = process_data(np_data)
|
126 |
+
# Ensure data is suitable for LSTM (e.g., (batch, sequence_length, input_size))
|
127 |
+
# If final_data is (sequence_length, input_size), add a batch dimension
|
128 |
+
torch_data = torch.tensor(final_data, dtype=torch.float32).unsqueeze(0)
|
129 |
+
|
130 |
+
print(f"Processed data shape for model: {torch_data.shape}")
|
131 |
+
|
132 |
+
# --- Inference ---
|
133 |
+
# Ensure model_path is correct relative to where app.py is run
|
134 |
+
# If 'models' is at your_project_root, adjust path if needed
|
135 |
+
|
136 |
+
|
137 |
+
# Assuming 'models' directory is at 'your_project_root' level
|
138 |
+
absolute_model_path = os.path.join("models", "lstm_emotion_model_state.pth")
|
139 |
+
|
140 |
+
|
141 |
+
loaded_model = load_model(absolute_model_path, input_size, hidden_size, output_size, num_layers)
|
142 |
+
loaded_model.eval() # Set model to evaluation mode
|
143 |
+
|
144 |
+
# Pass the prepared torch_data to the model
|
145 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
146 |
+
predicted_logits, _ = loaded_model(torch_data) # LSTM returns (output, (h_n, c_n))
|
147 |
+
|
148 |
+
# Get the most probable emotion index for each time step in the sequence
|
149 |
+
final_output_indices = torch.argmax(predicted_logits, dim=2) # Shape: (batch_size, sequence_length)
|
150 |
+
|
151 |
+
# Flatten the sequence to count overall emotion frequencies
|
152 |
+
# If batch size is 1, and sequence is long, this view(-1) works for counting all predictions
|
153 |
+
all_predicted_indices = final_output_indices.view(-1)
|
154 |
+
|
155 |
+
print(f"All predicted indices (flattened): {all_predicted_indices}")
|
156 |
+
|
157 |
+
# Count occurrences of each predicted emotion index
|
158 |
+
values_count = torch.bincount(all_predicted_indices, minlength=output_size) # Use minlength to ensure all 7 indices are considered
|
159 |
+
print(f"Raw bincount: {values_count}")
|
160 |
+
|
161 |
+
# --- Create Emotion Distribution DataFrame ---
|
162 |
+
# Initialize emotions_count with all emotions set to 0 frequency
|
163 |
+
emotions_count = {int_to_emotion[i].strip(): 0 for i in range(output_size)} # Use .strip() to remove trailing space from 'sad '
|
164 |
+
|
165 |
+
# Update counts only for emotions that were actually predicted
|
166 |
+
for idx, count in enumerate(values_count):
|
167 |
+
if idx < output_size: # Ensure index is within the expected range
|
168 |
+
emotions_count[int_to_emotion[idx].strip()] = count.item() # Use .strip() here too
|
169 |
+
|
170 |
+
# Convert dictionary to DataFrame
|
171 |
+
dom_emotion = max(emotions_count, key=emotions_count.get)
|
172 |
+
# Ensure column names match what gr.BarPlot expects: "Emotion" and "Frequency"
|
173 |
+
emotion_data = pd.DataFrame({
|
174 |
+
"Emotion": list(emotions_count.keys()),
|
175 |
+
"Frequency": list(emotions_count.values())
|
176 |
+
})
|
177 |
+
|
178 |
+
# Optional: Sort DataFrame by emotion name or frequency if desired for consistent plotting
|
179 |
+
emotion_data = emotion_data.sort_values(by="Emotion").reset_index(drop=True)
|
180 |
+
|
181 |
+
print(f"Final emotion_data DataFrame:\n{emotion_data}")
|
182 |
+
|
183 |
+
# CORRECTED: Return the DataFrame, NOT a gr.BarPlot object
|
184 |
+
# Return both the DataFrame for the plot and the DataFrame itself for the state
|
185 |
+
return gr.BarPlot(
|
186 |
+
emotion_data,
|
187 |
+
x="Emotion",
|
188 |
+
y="Frequency",
|
189 |
+
label="Emotion Distribution",
|
190 |
+
visible=True,
|
191 |
+
y_title="Frequency"
|
192 |
+
), emotion_data, gr.Textbox(abr_to_emotion[dom_emotion], visible=True)
|
193 |
+
|
194 |
+
|
195 |
+
def update_paintings(painter_name):
|
196 |
+
"""
|
197 |
+
Updates the gallery with paintings specific to the selected painter by
|
198 |
+
dynamically listing files in the painter's directory.
|
199 |
+
"""
|
200 |
+
painter_dir = os.path.join(PAINTERS_BASE_DIR, painter_name).replace(os.sep, '/')
|
201 |
+
print(painter_dir)
|
202 |
+
|
203 |
+
artist_paintings_for_gallery = []
|
204 |
+
if os.path.isdir(painter_dir):
|
205 |
+
for filename in sorted(os.listdir(painter_dir)): # Sort for consistent order
|
206 |
+
|
207 |
+
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
|
208 |
+
file_path = os.path.join(painter_dir, filename).replace(os.sep, '/')
|
209 |
+
print(file_path)
|
210 |
+
# Use filename without extension as title, or create more sophisticated parsing
|
211 |
+
title_with_ext = os.path.splitext(filename)[0]
|
212 |
+
artist_paintings_for_gallery.append((file_path, title_with_ext))
|
213 |
+
print(f"Loaded paintings for {painter_name}: {artist_paintings_for_gallery}")
|
214 |
+
return artist_paintings_for_gallery # Return the list directly for the gallery
|
215 |
+
|
216 |
+
|
217 |
+
def generate_my_art(painter, chosen_painting, dom_emotion):
|
218 |
+
"""
|
219 |
+
Simulates the image generation process.
|
220 |
+
'chosen_painting_info' will be the single selected item from gr.Gallery.select(),
|
221 |
+
e.g., ['Painters/Pablo Picasso/Dora Maar with Cat (1941).png', 'Dora Maar with Cat (1941)']
|
222 |
+
We need to extract the path.
|
223 |
+
"""
|
224 |
+
print("generating started")
|
225 |
+
print(f"painter: {painter}")
|
226 |
+
print(f"choosen painting: {chosen_painting}")
|
227 |
+
if not painter or not chosen_painting:
|
228 |
+
# Provide default outputs to ensure Gradio components are updated correctly
|
229 |
+
return "Please select a painter and a painting.", None, None
|
230 |
+
|
231 |
+
##style image_path
|
232 |
+
img_style_pth = os.path.join(PAINTERS_BASE_DIR, painter, chosen_painting)
|
233 |
+
print(f"img_stype_path: {img_style_pth}")
|
234 |
+
|
235 |
+
# Display initial status and disable button
|
236 |
+
# --- Simulate your NST or Diffusion Process Here ---
|
237 |
+
# In a real scenario, this would involve your actual NST code.
|
238 |
+
# It would use `selected_painting_path` as the style image.
|
239 |
+
# A content image would be dynamically generated (e.g., a simple colored canvas or
|
240 |
+
# abstract representation based on the PSD analysis's dominant emotion).
|
241 |
+
|
242 |
+
time.sleep(3) # Simulate processing time
|
243 |
+
|
244 |
+
# --- Simulate saving a generated image locally ---
|
245 |
+
# This PIL Image would be the actual result of your NST.
|
246 |
+
# We save it to the 'generated_art' directory.
|
247 |
+
"""generated_img_pil = Image.new('RGB', (400, 400), color=(np.random.randint(0,255), np.random.randint(0,255), np.random.randint(0,255)))
|
248 |
+
generated_image_local_path = f"generated_art/generated_output_{int(time.time())}.png"
|
249 |
+
generated_img_pil.save(generated_image_local_path)
|
250 |
+
|
251 |
+
# For the blended image, let's just return the selected style image path for now.
|
252 |
+
# In a real app, this might be a version of the 'generated_img_pil' with a final blend.
|
253 |
+
blended_image_local_path = selected_painting_path """
|
254 |
+
|
255 |
+
##original image
|
256 |
+
emotion_pth = os.path.join(EMOTION_BASE_DIR, dom_emotion)
|
257 |
+
image_name = list(os.listdir(emotion_pth))[random.randint(0, len(os.listdir(emotion_pth)) -1)]
|
258 |
+
original_image_pth = os.path.join(emotion_pth, image_name)
|
259 |
+
print(f"original img _path: {original_image_pth}")
|
260 |
+
final_message = f"Art generated based on {painter}'s {chosen_painting} style!"
|
261 |
+
|
262 |
+
## Neural Style Transfer added here
|
263 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
264 |
+
imsize = 512 if torch.cuda.is_available() else 256
|
265 |
+
loader = transforms.Compose([
|
266 |
+
transforms.Resize((imsize, imsize)),
|
267 |
+
transforms.ToTensor()
|
268 |
+
])
|
269 |
+
content_layers = ['conv_4']
|
270 |
+
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
|
271 |
+
cnn = models.vgg19(pretrained=True).features.to(device).eval()
|
272 |
+
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
|
273 |
+
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
|
274 |
+
style_img = image_loader(img_style_pth, loader, device)
|
275 |
+
content_img = image_loader(original_image_pth, loader, device)
|
276 |
+
input_img = content_img.clone()
|
277 |
+
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
|
278 |
+
content_img, style_img, input_img, content_layers, style_layers, device)
|
279 |
+
save_image(output, "stylized_output.jpg")
|
280 |
+
print("Stylized image saved as 'stylized_output.jpg'")
|
281 |
+
|
282 |
+
stylized_img_path = 'stylized_output.jpg'
|
283 |
+
# Return final results and re-enable button
|
284 |
+
yield gr.Textbox(final_message), original_image_pth, stylized_img_path
|
285 |
+
|
286 |
+
|
287 |
+
def generate_topomap(n_channels, n_time):
|
288 |
+
n_sensors = 64
|
289 |
+
|
290 |
+
if n_channels is None or n_time is None:
|
291 |
+
print("they are None")
|
292 |
+
n_channels = 4
|
293 |
+
n_time = 500
|
294 |
+
# ----------------------------
|
295 |
+
# 2. Load standard 10-20 montage
|
296 |
+
# ----------------------------
|
297 |
+
montage = mne.channels.make_standard_montage('standard_1020')
|
298 |
+
# Filter only the standard 64 EEG electrodes
|
299 |
+
standard_64_chs = [
|
300 |
+
'Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8',
|
301 |
+
'FC5', 'FC1', 'FC2', 'FC6', 'T7', 'C3', 'Cz', 'C4', 'T8',
|
302 |
+
'CP5', 'CP1', 'CP2', 'CP6', 'P7', 'P3', 'Pz', 'P4', 'P8',
|
303 |
+
'POz', 'O1', 'Oz', 'O2', 'Fpz', 'AF7', 'AF3', 'AF4', 'AF8',
|
304 |
+
'F5', 'F1', 'F2', 'F6', 'FC3', 'FCz', 'FC4', 'C5', 'C1', 'C2',
|
305 |
+
'C6', 'CP3', 'CPz', 'CP4', 'P5', 'P1', 'P2', 'P6', 'PO3', 'PO4',
|
306 |
+
'PO7', 'PO8', 'PO9', 'PO10', 'O1', 'O2', 'FT7', 'FT8', 'TP7', 'TP8'
|
307 |
+
]
|
308 |
+
# exactly 64 channels
|
309 |
+
ch_pos_dict = montage.get_positions()['ch_pos']
|
310 |
+
|
311 |
+
ch_pos_dict_filtered = {ch: ch_pos_dict[ch] for ch in standard_64_chs}
|
312 |
+
channel_names = list(ch_pos_dict_filtered.keys())
|
313 |
+
ch_pos_array = np.array([ch_pos_dict_filtered[ch] for ch in standard_64_chs]) # Nx3
|
314 |
+
ch_pos_2d = ch_pos_array[:, :2] # For 2D topomap
|
315 |
+
|
316 |
+
# ----------------------------
|
317 |
+
# 3. Choose a time index and frequency index
|
318 |
+
# ----------------------------
|
319 |
+
|
320 |
+
new_data = np_data.reshape(64, 630, 5)
|
321 |
+
print(f"shape: {new_data.shape}")
|
322 |
+
print(f"n channels: {n_channels}")
|
323 |
+
psd_snapshot = new_data[:, n_time - 1, n_channels - 1]
|
324 |
+
|
325 |
+
# Normalize PSD for coloring
|
326 |
+
psd_norm = (psd_snapshot - psd_snapshot.min()) / (psd_snapshot.max() - psd_snapshot.min())
|
327 |
+
|
328 |
+
# ----------------------------
|
329 |
+
# 4. Plot 2D topomap using MNE
|
330 |
+
# ----------------------------
|
331 |
+
|
332 |
+
print(f"shape psd :{psd_snapshot.shape}")
|
333 |
+
fig, ax = plt.subplots()
|
334 |
+
mne.viz.plot_topomap(
|
335 |
+
psd_snapshot,
|
336 |
+
ch_pos_2d,
|
337 |
+
names=channel_names,
|
338 |
+
show=False,
|
339 |
+
axes=ax
|
340 |
+
)
|
341 |
+
|
342 |
+
# Save the generated topomap to a temp file
|
343 |
+
tmpfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
344 |
+
fig.savefig(tmpfile.name, dpi=150, bbox_inches="tight")
|
345 |
+
plt.close(fig)
|
346 |
+
return tmpfile.name
|
347 |
+
|
348 |
+
predefined_psd_files = ["task-emotion_psd_1.npy", "task-emotion_psd_2.npy", "task-emotion_psd_3.npy"]
|
349 |
+
|
350 |
+
# --- Gradio Interface Definition ---
|
351 |
+
|
352 |
+
with gr.Blocks(css=".gradio-container { max-width: 2000px; margin: auto; }") as demo:
|
353 |
+
# Define the gr.State component here, accessible throughout the Blocks
|
354 |
+
# This will hold the information of the SINGLE selected painting from the gallery
|
355 |
+
# This will hold the DataFrame of the emotion distribution (to be passed to generate_my_art)
|
356 |
+
current_emotion_df_state = gr.State(value=pd.DataFrame())
|
357 |
+
|
358 |
+
|
359 |
+
# Header Section
|
360 |
+
gr.Markdown(
|
361 |
+
"""
|
362 |
+
<h1 style="text-align: center;font-size: 5em; padding: 20px; font-weight: bold;">Brain Emotion Decoder 🧠🎨</h1>
|
363 |
+
<p style="text-align: center; font-size: 1.5em; color: #555;font-weight: bold;">
|
364 |
+
Imagine seeing your deepest feelings transform into art. We decode the underlying emotions from your brain activity,
|
365 |
+
generating a personalized artwork that comes to life within an interactive 3D brain model. Discover the art of your inner self.
|
366 |
+
</p>
|
367 |
+
"""
|
368 |
+
)
|
369 |
+
|
370 |
+
with gr.Row():
|
371 |
+
# Left Column: Input and Emotion Distribution
|
372 |
+
with gr.Column(scale=1):
|
373 |
+
gr.Markdown("<h2 font-size: 2em;>1. Choose a PSD file<h2>")
|
374 |
+
# Radio buttons to select from predefined files
|
375 |
+
psd_file_selection = gr.Radio(
|
376 |
+
choices=predefined_psd_files,
|
377 |
+
label="Select a PSD file for analysis",
|
378 |
+
value=predefined_psd_files[0], # Default selection
|
379 |
+
interactive=True
|
380 |
+
)
|
381 |
+
|
382 |
+
# Button to trigger PSD analysis
|
383 |
+
analyze_psd_button = gr.Button("Analyze PSD File", variant="secondary")
|
384 |
+
|
385 |
+
gr.Markdown("<h2 font-size: 2em;>2. Emotion Distribution<h2>")
|
386 |
+
|
387 |
+
# Bar plot for emotion distribution
|
388 |
+
emotion_distribution_plot = gr.BarPlot(
|
389 |
+
dummy_emotion_data,
|
390 |
+
x="Emotion",
|
391 |
+
y="Value",
|
392 |
+
label="Emotion Distribution",
|
393 |
+
height=300,
|
394 |
+
x_title="Emotion Type",
|
395 |
+
y_title="Frequency",
|
396 |
+
visible=False # Hidden until analysis is triggered
|
397 |
+
)
|
398 |
+
|
399 |
+
|
400 |
+
dom_emotion = gr.Textbox(label = "dominant emotion", visible=False)
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
# Right Column: Art Museum and Generation
|
405 |
+
with gr.Column(scale=1):
|
406 |
+
gr.Markdown("<h3>Your Art Mesum</h3>") # Kept original heading
|
407 |
+
|
408 |
+
gr.Markdown("<h3>3. Choose your favourite painter</h3>")
|
409 |
+
painter_dropdown = gr.Dropdown(
|
410 |
+
choices=painters,
|
411 |
+
value="Pablo Picasso", # Default selection
|
412 |
+
label="Select a Painter"
|
413 |
+
)
|
414 |
+
|
415 |
+
gr.Markdown("<h3>4. Choose your favourite painting</h3>")
|
416 |
+
# Gallery to display paintings for selection
|
417 |
+
painting_gallery = gr.Gallery(
|
418 |
+
# Correct initial value and visibility
|
419 |
+
value=update_paintings("Pablo Picasso"), # Initial load for Picasso's paintings
|
420 |
+
label="Select a Painting",
|
421 |
+
height=300,
|
422 |
+
columns=3,
|
423 |
+
rows=1,
|
424 |
+
object_fit="contain",
|
425 |
+
preview=True, # Allows clicking to see larger image
|
426 |
+
interactive=True, # Make it selectable
|
427 |
+
elem_id="painting_gallery",
|
428 |
+
visible=True, # Should be visible by default
|
429 |
+
)
|
430 |
+
|
431 |
+
|
432 |
+
# Button to trigger art generation
|
433 |
+
selected_painting_name = gr.Textbox(visible=False)
|
434 |
+
generate_button = gr.Button("Generate My Art", variant="primary", scale=0)
|
435 |
+
# Status message for image generation
|
436 |
+
status_message = gr.Textbox(
|
437 |
+
value="Click 'Generate My Art' to begin.",
|
438 |
+
label="Generation Status",
|
439 |
+
interactive=False,
|
440 |
+
show_label=False,
|
441 |
+
lines=1
|
442 |
+
)
|
443 |
+
|
444 |
+
# Output section on a separate "page" or revealed dynamically
|
445 |
+
gr.Markdown(
|
446 |
+
"""
|
447 |
+
<h1 style="text-align: center;">Your Generated Artwork</h1>
|
448 |
+
<p style="text-align: center; color: #555;">
|
449 |
+
Once your brain's emotional data is processed, we pinpoint the <b>dominant emotion</b>. This single feeling inspires a <b>personalized artwork</b>, generated using <b>diffusion techniques</b> and blended with <b>my AI painting style</b>. You can then <b>download</b> this unique visual representation of your inner self.
|
450 |
+
</p>
|
451 |
+
"""
|
452 |
+
)
|
453 |
+
|
454 |
+
with gr.Row():
|
455 |
+
with gr.Column(scale=1):
|
456 |
+
gr.Markdown("<h3>Generated Image</h3>")
|
457 |
+
generated_image_output = gr.Image(label="Generated Image", show_label=False, height=300)
|
458 |
+
gr.Markdown("<h3>Blended Style Image</h3>")
|
459 |
+
blended_image_output = gr.Image(label="Blended Style Image", show_label=False, height=300)
|
460 |
+
|
461 |
+
with gr.Column(scale=1):
|
462 |
+
gr.Markdown("<h3>Brain Topomap</h3>")
|
463 |
+
channels_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Channels", interactive=True)
|
464 |
+
timestamp_slider = gr.Slider(minimum=1, maximum=630, value=1, step=1, label="Timestamp", interactive=True)
|
465 |
+
mne_2d_img = gr.Image(visible=True)
|
466 |
+
generate_button.click(generate_topomap, outputs=mne_2d_img)
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
# --- Event Listeners ---
|
471 |
+
analyze_psd_button.click(
|
472 |
+
upload_psd_file,
|
473 |
+
inputs=[psd_file_selection], # Input is the selected radio button value (file name)
|
474 |
+
outputs=[emotion_distribution_plot, current_emotion_df_state, dom_emotion] # CORRECTED: Added current_emotion_df_state to outputs
|
475 |
+
)
|
476 |
+
|
477 |
+
# When painter dropdown changes, update the gallery content and reset selected_painting_state
|
478 |
+
painter_dropdown.change(
|
479 |
+
update_paintings, # This updates the gallery
|
480 |
+
inputs=[painter_dropdown],
|
481 |
+
outputs=[painting_gallery] # Only output the gallery content directly
|
482 |
+
)
|
483 |
+
|
484 |
+
# IMPORTANT: Use the .select() method of gr.Gallery to capture the specific clicked item.
|
485 |
+
# The 'select' event passes the selected value directly as the argument to the function.
|
486 |
+
# We use a lambda to simply return that selected value and store it in our state.
|
487 |
+
def on_select(evt: gr.SelectData):
|
488 |
+
print("this function started")
|
489 |
+
print(f"Image index: {evt.index}\nImage value: {evt.value['image']['orig_name']}")
|
490 |
+
return evt.value['image']['orig_name']
|
491 |
+
painting_gallery.select(
|
492 |
+
on_select, # This lambda receives the selected image info (path, title)
|
493 |
+
outputs=[selected_painting_name] # The output updates our gr.State component
|
494 |
+
)
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
# The generate_button now correctly uses the value from selected_painting_state
|
501 |
+
generate_button.click(
|
502 |
+
generate_my_art,
|
503 |
+
inputs=[painter_dropdown, selected_painting_name, dom_emotion], # Pass painter and the SELECTED painting
|
504 |
+
outputs=[status_message, generated_image_output, blended_image_output]
|
505 |
+
)
|
506 |
+
|
507 |
+
|
508 |
+
## sliders event listener
|
509 |
+
channels_slider.change(fn=generate_topomap, inputs=[channels_slider, timestamp_slider], outputs=mne_2d_img)
|
510 |
+
timestamp_slider.change(fn=generate_topomap, inputs=[channels_slider, timestamp_slider], outputs=mne_2d_img)
|
511 |
+
# Launch the demo
|
512 |
+
if __name__ == "__main__":
|
513 |
+
# Ensure project_root_dir is defined for this block if you uncomment these lines
|
514 |
+
# project_root_dir = os.path.dirname(os.path.abspath(__file__))
|
515 |
+
# project_root_dir = os.path.dirname(project_root_dir)
|
516 |
+
# print(f"Loading LSTM model from: {os.path.join(project_root_dir, model_path)}")
|
517 |
+
# _ = load_model(os.path.join(project_root_dir, model_path), input_size, hidden_size, output_size, num_layers)
|
518 |
+
|
519 |
+
demo.launch()
|
stylized_output.jpg
ADDED
![]() |