Spaces:
Runtime error
Runtime error
Ikala-allen
commited on
Commit
·
88b0888
1
Parent(s):
046a29a
fix
Browse files- README.md +44 -7
- app.py +3 -1
- custom_metric/custom_metric.py → relation_extraction.py +3 -2
README.md
CHANGED
@@ -1,13 +1,50 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: relation_extraction
|
3 |
+
datasets:
|
4 |
+
- none
|
5 |
+
tags:
|
6 |
+
- evaluate
|
7 |
+
- metric
|
8 |
+
description: "TODO: add a description here"
|
9 |
sdk: gradio
|
10 |
+
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
12 |
pinned: false
|
|
|
13 |
---
|
14 |
|
15 |
+
# Metric Card for relation_extraction
|
16 |
+
|
17 |
+
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
18 |
+
|
19 |
+
## Metric Description
|
20 |
+
*Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
|
21 |
+
|
22 |
+
## How to Use
|
23 |
+
*Give general statement of how to use the metric*
|
24 |
+
|
25 |
+
*Provide simplest possible example for using the metric*
|
26 |
+
|
27 |
+
### Inputs
|
28 |
+
*List all input arguments in the format below*
|
29 |
+
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
|
30 |
+
|
31 |
+
### Output Values
|
32 |
+
|
33 |
+
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
|
34 |
+
|
35 |
+
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
|
36 |
+
|
37 |
+
#### Values from Popular Papers
|
38 |
+
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
39 |
+
|
40 |
+
### Examples
|
41 |
+
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
42 |
+
|
43 |
+
## Limitations and Bias
|
44 |
+
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
45 |
+
|
46 |
+
## Citation
|
47 |
+
*Cite the source where this metric was introduced.*
|
48 |
+
|
49 |
+
## Further References
|
50 |
+
*Add any useful further references.*
|
app.py
CHANGED
@@ -2,9 +2,11 @@ import evaluate
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
# Define the path to your custom metric directory
|
5 |
-
metric_path = "
|
6 |
|
7 |
|
8 |
module = evaluate.load(metric_path)
|
9 |
launch_gradio_widget(module)
|
10 |
|
|
|
|
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
# Define the path to your custom metric directory
|
5 |
+
metric_path = "Ikala-allen/relation_extraction"
|
6 |
|
7 |
|
8 |
module = evaluate.load(metric_path)
|
9 |
launch_gradio_widget(module)
|
10 |
|
11 |
+
|
12 |
+
|
custom_metric/custom_metric.py → relation_extraction.py
RENAMED
@@ -2,6 +2,7 @@ import evaluate
|
|
2 |
import datasets
|
3 |
import numpy as np
|
4 |
|
|
|
5 |
_CITATION = """\
|
6 |
@InProceedings{huggingface:module,
|
7 |
title = {A great new module},
|
@@ -119,10 +120,10 @@ class relation_extraction(evaluate.Metric):
|
|
119 |
def _compute(self, predictions, references, mode="strict", relation_types=[]):
|
120 |
"""Returns the scores"""
|
121 |
# TODO: Compute the different scores of the module
|
122 |
-
|
123 |
predictions = convert_format(predictions)
|
124 |
references = convert_format(references)
|
125 |
-
|
126 |
assert mode in ["strict", "boundaries"]
|
127 |
|
128 |
# construct relation_types from ground truth if not given
|
|
|
2 |
import datasets
|
3 |
import numpy as np
|
4 |
|
5 |
+
# TODO: Add BibTeX citation
|
6 |
_CITATION = """\
|
7 |
@InProceedings{huggingface:module,
|
8 |
title = {A great new module},
|
|
|
120 |
def _compute(self, predictions, references, mode="strict", relation_types=[]):
|
121 |
"""Returns the scores"""
|
122 |
# TODO: Compute the different scores of the module
|
123 |
+
|
124 |
predictions = convert_format(predictions)
|
125 |
references = convert_format(references)
|
126 |
+
|
127 |
assert mode in ["strict", "boundaries"]
|
128 |
|
129 |
# construct relation_types from ground truth if not given
|