Spaces:
Sleeping
Sleeping
File size: 8,857 Bytes
49a5e80 551c0f3 49a5e80 551c0f3 49a5e80 551c0f3 c32dad6 551c0f3 c32dad6 5199433 49a5e80 5199433 551c0f3 fc0c168 551c0f3 c32dad6 551c0f3 01991de 551c0f3 01991de 551c0f3 a21a5e4 551c0f3 a21a5e4 551c0f3 01991de 551c0f3 01991de 551c0f3 01991de 551c0f3 01991de 551c0f3 01991de 551c0f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import datetime
import json
import logging
import os
import random
import threading
import time
import uuid
from functools import partial
import gradio as gr
import huggingface_hub
import requests
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API configuration
API_URL = os.getenv("API_URL")
API_KEY = os.getenv("API_KEY")
auth_token = os.environ.get("TOKEN") or True
hf_repo = "Iker/Feedback_FactCheking_Mar4"
huggingface_hub.create_repo(
repo_id=hf_repo,
repo_type="dataset",
token=auth_token,
exist_ok=True,
private=True,
)
headers = {"X-API-Key": API_KEY, "Content-Type": "application/json"}
def update_models():
models = ["pro", "pro-gpt", "pro-rag", "pro-rag-gpt"]
# Randomly select if we want to use pro or turbo models
# if random.random() < 0.5:
# models = models_pro
# else:
# models = models_turbo
# Randomly select two models
models = random.sample(models, 2)
print(f"Models updated: {models}")
return models
# Function to submit a fact-checking request
def submit_fact_check(article_topic, config, language, location):
endpoint = f"{API_URL}/fact-check"
payload = {
"article_topic": article_topic,
"config": config,
"language": language,
"location": location,
}
response = requests.post(endpoint, json=payload, headers=headers)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()["job_id"]
# Function to get the result of a fact-checking job
def get_fact_check_result(job_id):
endpoint = f"{API_URL}/result/{job_id}"
response = requests.get(endpoint, headers=headers)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()
def fact_checking(article_topic, config):
language = "es"
location = "es"
logger.info(f"Submitting fact-checking request for article: {article_topic}")
try:
job_id = submit_fact_check(article_topic, config, language, location)
logger.info(f"Fact-checking job submitted. Job ID: {job_id}")
# Poll for results
start_time = time.time()
while True:
try:
result = get_fact_check_result(job_id)
if result["status"] == "completed":
logger.info("Fact-checking completed:")
logger.info(f"Response object: {result}")
logger.info(
f"Result: {json.dumps(result['result'], indent=4, ensure_ascii=False)}"
)
return result["result"]
elif result["status"] == "failed":
logger.error("Fact-checking failed:")
logger.error(f"Response object: {result}")
logger.error(f"Error message: {result['error']}")
return None
else:
elapsed_time = time.time() - start_time
logger.info(
f"Fact-checking in progress. Elapsed time: {elapsed_time:.2f} seconds"
)
time.sleep(2) # Wait for 2 seconds before checking again
except requests.exceptions.RequestException as e:
logger.error(f"Error while polling for results: {e}")
time.sleep(2) # Wait before retrying
except requests.exceptions.RequestException as e:
logger.error(f"An error occurred while submitting the request: {e}")
def format_response(response):
title = response["metadata"]["title"]
main_claim = response["metadata"]["main_claim"]
fc = response["answer"]
rq = response["related_questions"]
rq_block = []
for q, a in rq.items():
rq_block.append("**{}**\n{}".format(q, a))
return "## {}\n\n### {}\n\n{}\n\n{}".format(title, main_claim, fc, "\n".join(rq_block))
def do_both_fact_checking(msg):
models = update_models()
results = [None, None]
threads = []
def fact_checking_1_thread():
results[0] = fact_checking(msg, config=models[0])
def fact_checking_2_thread():
results[1] = fact_checking(msg, config=models[1])
# Start the threads
thread1 = threading.Thread(target=fact_checking_1_thread)
thread2 = threading.Thread(target=fact_checking_2_thread)
threads.append(thread1)
threads.append(thread2)
thread1.start()
thread2.start()
# Wait for the threads to complete
for thread in threads:
thread.join()
# Format the responses
response_1 = format_response(results[0]) if results[0] else "Error"
response_2 = format_response(results[1]) if results[1] else "Error"
history_a = [(msg, response_1)]
history_b = [(msg, response_2)]
return ("", history_a, history_b, models)
def save_history(
models,
history_0,
history_1,
max_new_tokens=None,
temperature=None,
top_p=None,
repetition_penalty=None,
winner=None,
):
path = f"history_{uuid.uuid4()}.json"
path = os.path.join("data", path)
os.makedirs("data", exist_ok=True)
data = {
"timestamp": datetime.datetime.now().isoformat(),
# "models": models,
"model_a": models[0],
"model_b": models[1],
"hyperparameters": {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
},
"message": history_0[0][0],
"fc_a": history_0[0][1],
"fc_b": history_1[0][1],
"winner": winner,
}
with open(path, "w") as f:
json.dump(data, ensure_ascii=False, indent=4, fp=f)
huggingface_hub.upload_file(
repo_id=hf_repo,
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
path_in_repo=path,
path_or_fileobj=path,
)
gr.Info("Feedback sent successfully! Thank you for your help.")
return [], []
with gr.Blocks(
theme="gradio/soft",
fill_height=True,
fill_width=True,
analytics_enabled=False,
title="Fact Cheking Demo",
css=".center-text { text-align: center; } footer {visibility: hidden;} .avatar-container {width: 50px; height: 50px; border: none;}",
) as demo:
gr.Markdown("# Fact Checking Arena", elem_classes="center-text")
models = gr.State([])
with gr.Row():
with gr.Column():
chatbot_a = gr.Chatbot(
height=800,
show_copy_all_button=True,
avatar_images=[
None,
"https://upload.wikimedia.org/wikipedia/commons/a/ac/Green_tick.svg",
],
)
with gr.Column():
chatbot_b = gr.Chatbot(
show_copy_all_button=True,
height=800,
avatar_images=[
None,
"https://upload.wikimedia.org/wikipedia/commons/a/ac/Green_tick.svg",
],
)
msg = gr.Textbox(
label="Introduce que quieres verificar",
placeholder="Los coches electricos contaminan más que los coches de gasolina",
autofocus=True,
)
with gr.Row():
with gr.Column():
left = gr.Button("👈 Izquierda mejor")
with gr.Column():
tie = gr.Button("🤝 Iguald de buenos")
with gr.Column():
fail = gr.Button("👎 Igual de malos")
with gr.Column():
right = gr.Button("👉 Derecha mejor")
msg.submit(
do_both_fact_checking,
inputs=[
msg,
],
outputs=[msg, chatbot_a, chatbot_b, models],
)
left.click(
partial(
save_history,
winner="model_a",
),
inputs=[
models,
chatbot_a,
chatbot_b,
],
outputs=[chatbot_a, chatbot_b],
)
tie.click(
partial(
save_history,
winner="tie",
),
inputs=[
models,
chatbot_a,
chatbot_b,
],
outputs=[chatbot_a, chatbot_b],
)
fail.click(
partial(
save_history,
winner="tie (both bad)",
),
inputs=[
models,
chatbot_a,
chatbot_b,
],
outputs=[chatbot_a, chatbot_b],
)
right.click(
partial(
save_history,
winner="model_b",
),
inputs=[
models,
chatbot_a,
chatbot_b,
],
outputs=[chatbot_a, chatbot_b],
)
demo.load(update_models, inputs=[], outputs=[models])
demo.launch(
# auth=(os.getenv("GRADIO_USERNAME"), os.getenv("GRADIO_PASSWORD")),share=True
)
|