import datetime import json import logging import os import random import threading import time import uuid from functools import partial import gradio as gr import huggingface_hub import requests logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # API configuration API_URL = os.getenv("API_URL") API_KEY = os.getenv("API_KEY") auth_token = os.environ.get("TOKEN") or True hf_repo = "Iker/Feedback_FactCheking_Mar4" huggingface_hub.create_repo( repo_id=hf_repo, repo_type="dataset", token=auth_token, exist_ok=True, private=True, ) headers = {"X-API-Key": API_KEY, "Content-Type": "application/json"} def update_models(): models = ["pro", "pro-gpt", "pro-rag", "pro-rag-gpt"] # Randomly select if we want to use pro or turbo models # if random.random() < 0.5: # models = models_pro # else: # models = models_turbo # Randomly select two models models = random.sample(models, 2) print(f"Models updated: {models}") return models # Function to submit a fact-checking request def submit_fact_check(article_topic, config, language, location): endpoint = f"{API_URL}/fact-check" payload = { "article_topic": article_topic, "config": config, "language": language, "location": location, } response = requests.post(endpoint, json=payload, headers=headers) response.raise_for_status() # Raise an exception for HTTP errors return response.json()["job_id"] # Function to get the result of a fact-checking job def get_fact_check_result(job_id): endpoint = f"{API_URL}/result/{job_id}" response = requests.get(endpoint, headers=headers) response.raise_for_status() # Raise an exception for HTTP errors return response.json() def fact_checking(article_topic, config): language = "es" location = "es" logger.info(f"Submitting fact-checking request for article: {article_topic}") try: job_id = submit_fact_check(article_topic, config, language, location) logger.info(f"Fact-checking job submitted. Job ID: {job_id}") # Poll for results start_time = time.time() while True: try: result = get_fact_check_result(job_id) if result["status"] == "completed": logger.info("Fact-checking completed:") logger.info(f"Response object: {result}") logger.info( f"Result: {json.dumps(result['result'], indent=4, ensure_ascii=False)}" ) return result["result"] elif result["status"] == "failed": logger.error("Fact-checking failed:") logger.error(f"Response object: {result}") logger.error(f"Error message: {result['error']}") return None else: elapsed_time = time.time() - start_time logger.info( f"Fact-checking in progress. Elapsed time: {elapsed_time:.2f} seconds" ) time.sleep(2) # Wait for 2 seconds before checking again except requests.exceptions.RequestException as e: logger.error(f"Error while polling for results: {e}") time.sleep(2) # Wait before retrying except requests.exceptions.RequestException as e: logger.error(f"An error occurred while submitting the request: {e}") def format_response(response): title = response["metadata"]["title"] main_claim = response["metadata"]["main_claim"] fc = response["answer"] rq = response["related_questions"] rq_block = [] for q, a in rq.items(): rq_block.append("**{}**\n{}".format(q, a)) return "## {}\n\n### {}\n\n{}\n\n{}".format(title, main_claim, fc, "\n".join(rq_block)) def do_both_fact_checking(msg): models = update_models() results = [None, None] threads = [] def fact_checking_1_thread(): results[0] = fact_checking(msg, config=models[0]) def fact_checking_2_thread(): results[1] = fact_checking(msg, config=models[1]) # Start the threads thread1 = threading.Thread(target=fact_checking_1_thread) thread2 = threading.Thread(target=fact_checking_2_thread) threads.append(thread1) threads.append(thread2) thread1.start() thread2.start() # Wait for the threads to complete for thread in threads: thread.join() # Format the responses response_1 = format_response(results[0]) if results[0] else "Error" response_2 = format_response(results[1]) if results[1] else "Error" history_a = [(msg, response_1)] history_b = [(msg, response_2)] return ("", history_a, history_b, models) def save_history( models, history_0, history_1, max_new_tokens=None, temperature=None, top_p=None, repetition_penalty=None, winner=None, ): path = f"history_{uuid.uuid4()}.json" path = os.path.join("data", path) os.makedirs("data", exist_ok=True) data = { "timestamp": datetime.datetime.now().isoformat(), # "models": models, "model_a": models[0], "model_b": models[1], "hyperparameters": { "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "repetition_penalty": repetition_penalty, }, "message": history_0[0][0], "fc_a": history_0[0][1], "fc_b": history_1[0][1], "winner": winner, } with open(path, "w") as f: json.dump(data, ensure_ascii=False, indent=4, fp=f) huggingface_hub.upload_file( repo_id=hf_repo, repo_type="dataset", token=os.environ.get("TOKEN") or True, path_in_repo=path, path_or_fileobj=path, ) gr.Info("Feedback sent successfully! Thank you for your help.") return [], [] with gr.Blocks( theme="gradio/soft", fill_height=True, fill_width=True, analytics_enabled=False, title="Fact Cheking Demo", css=".center-text { text-align: center; } footer {visibility: hidden;} .avatar-container {width: 50px; height: 50px; border: none;}", ) as demo: gr.Markdown("# Fact Checking Arena", elem_classes="center-text") models = gr.State([]) with gr.Row(): with gr.Column(): chatbot_a = gr.Chatbot( height=800, show_copy_all_button=True, avatar_images=[ None, "https://upload.wikimedia.org/wikipedia/commons/a/ac/Green_tick.svg", ], ) with gr.Column(): chatbot_b = gr.Chatbot( show_copy_all_button=True, height=800, avatar_images=[ None, "https://upload.wikimedia.org/wikipedia/commons/a/ac/Green_tick.svg", ], ) msg = gr.Textbox( label="Introduce que quieres verificar", placeholder="Los coches electricos contaminan mรกs que los coches de gasolina", autofocus=True, ) with gr.Row(): with gr.Column(): left = gr.Button("๐Ÿ‘ˆ Izquierda mejor") with gr.Column(): tie = gr.Button("๐Ÿค Iguald de buenos") with gr.Column(): fail = gr.Button("๐Ÿ‘Ž Igual de malos") with gr.Column(): right = gr.Button("๐Ÿ‘‰ Derecha mejor") msg.submit( do_both_fact_checking, inputs=[ msg, ], outputs=[msg, chatbot_a, chatbot_b, models], ) left.click( partial( save_history, winner="model_a", ), inputs=[ models, chatbot_a, chatbot_b, ], outputs=[chatbot_a, chatbot_b], ) tie.click( partial( save_history, winner="tie", ), inputs=[ models, chatbot_a, chatbot_b, ], outputs=[chatbot_a, chatbot_b], ) fail.click( partial( save_history, winner="tie (both bad)", ), inputs=[ models, chatbot_a, chatbot_b, ], outputs=[chatbot_a, chatbot_b], ) right.click( partial( save_history, winner="model_b", ), inputs=[ models, chatbot_a, chatbot_b, ], outputs=[chatbot_a, chatbot_b], ) demo.load(update_models, inputs=[], outputs=[models]) demo.launch( # auth=(os.getenv("GRADIO_USERNAME"), os.getenv("GRADIO_PASSWORD")),share=True )