File size: 165,761 Bytes
15ad24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/vanderbilt-data-science/lo-achievement/blob/main/prompt_with_vector_store_w_grading_intr.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "S4MkldrwPA_S"
      },
      "source": [
        "# LLMs for Self-Study\n",
        "> A prompt and code template for better understanding texts\n",
        "\n",
        "This notebook provides a guide for using LLMs for self-study programmatically. A number of prompt templates are provided to assist with generating great assessments for self-study, and code is additionally provided for fast usage. This notebook is best leveraged for a set of documents (text or PDF preferred) **to be uploaded** for interaction with the model.\n",
        "\n",
        "This version of the notebook is best suited for those who prefer to use files from their local drive as context rather than copy and pasting directly into the notebook to be used as context for the model. If you prefer to copy and paste text, you should direct yourself to the [prompt_with_context](https://colab.research.google.com/github/vanderbilt-data-science/lo-achievement/blob/main/prompt_with_context.ipynb) notebook."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "IYx3Elo9HJSL"
      },
      "outputs": [],
      "source": [
        "#libraries for user setup code\n",
        "from getpass import getpass\n",
        "from logging import raiseExceptions"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "m34rxkb-HJSM"
      },
      "source": [
        "## Helper functions\n",
        "The following functions help to encapsulate the functionality executed below. The `setup_drives` function below assists with setting up the drives for users to upload files."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "4Ma5b-UOHJSM"
      },
      "outputs": [],
      "source": [
        "def setup_drives(upload_set):\n",
        "\n",
        "    upload_set = upload_set.lower()\n",
        "\n",
        "    # Colab file upload module\n",
        "    if upload_set == \"local drive\":\n",
        "        from google.colab import files\n",
        "        uploaded = files.upload()\n",
        "    elif upload_set == \"google drive\":\n",
        "        # Mount a Google Drive\n",
        "        from google.colab import drive\n",
        "        drive.mount('/content/drive')\n",
        "    # Raise errors\n",
        "    elif upload_set == '':\n",
        "        raise ValueError(\"You haven't yet defined the upload_settings variable. Go back and read the instructions to make this setting.\")\n",
        "    else:\n",
        "        raise SyntaxError(\"Please check your setting for typos and/or capitalization\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_CY5vBN7HJSN"
      },
      "source": [
        "# User Settings\n",
        "In this section, you'll set your OpenAI API Key (for use with the OpenAI model), configure your environment/files for upload, and upload those files."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "b8l02DqDHJSN",
        "outputId": "b8202800-6dcf-4119-e668-386e575228c5",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "··········\n"
          ]
        }
      ],
      "source": [
        "# Run this cell and enter your OpenAI API key when prompted\n",
        "openai_api_key = getpass()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "KLNm2ULSHJSN"
      },
      "outputs": [],
      "source": [
        "# Model name\n",
        "mdl_name = 'gpt-3.5-turbo-0301'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yK36707DS1NW"
      },
      "source": [
        "## Define Your Document Source\n",
        "You may upload your files directly from your computer, or you may choose to do so via your Google Drive. Below, you will find instructions for both methods.\n",
        "\n",
        "For either model, begin by setting the `upload_setting` variable to:\n",
        "* `'Local Drive'` - if you have files that are on your own computer (locally), or\n",
        "* `'Google Drive'` - if you have files that are stored on Google Drive\n",
        "\n",
        "e.g.,\n",
        "`upload_setting='Google Drive'`.\n",
        "Don't forget the quotes around your selection!"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "ybwrtS9jHJSN"
      },
      "outputs": [],
      "source": [
        "## Settings for upload: via local drive or Google Drive\n",
        "### Please input either \"Google Drive\" or \"Local Drive\" into the empty string\n",
        "\n",
        "upload_setting = 'Local Drive'\n",
        "#upload_setting = 'Google Drive'\n",
        "#upload_setting = 'Local Drive'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "kth2I2OSVpla"
      },
      "source": [
        "<p style='color:green'><strong>Before Continuing</strong> - Make sure you have input your choice of upload into the `upload_setting`` variable above (Options: \"Local Drive\" or \"Google Drive\") as described in the above instructions.</p>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ScAQ1aQkHJSO"
      },
      "source": [
        "## Upload your Files\n",
        "Now, you'll upload your files. When you run the below code cell, you'll be able to follow the instructions for local or Google Drive upload described here. If you would like to use our example document (Robert Frost's \"The Road Not Taken\", you can download the file from [this link](https://drive.google.com/drive/folders/1wpEoGACUqyNRYa4zBZeNkqcLJrGQbA53?usp=sharing) and upload via the instructions above.\n",
        "\n",
        "**If you selected \"Local Drive\" :**\n",
        "> If you selected Local Drive, you'll need to start by selecting your local files. Run the code cell below. Once the icon appears, click the \"Choose File\". This will direct you to your computer's local drive. Select the file you would like to upload as context. The files will appear in the right sidebar. Then follow the rest of the steps in the \"Uploading Your files (Local Drive and Google Drive)\" below.\n",
        "\n",
        "**If you selected \"Google Drive\" :**\n",
        "> If you selected Google Drive, you'll need to start by allowing access to your Google Drive. Run the code cell below. You will be redirected to a window where you will allow access to your Google Drive by logging into your Google Account. Your Drive will appear as a folder in the left side panel. Navigate through your Google Drive until you've found the file that you'd like to upload.\n",
        "\n",
        "Your files are now accessible to the code."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "lHNodJ6pHJSO",
        "outputId": "e8033473-357d-42f6-ca6a-0b1555f7880a",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 74
        }
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "\n",
              "     <input type=\"file\" id=\"files-97312b0b-ff5c-4c97-bacf-ff281aa6d5fa\" name=\"files[]\" multiple disabled\n",
              "        style=\"border:none\" />\n",
              "     <output id=\"result-97312b0b-ff5c-4c97-bacf-ff281aa6d5fa\">\n",
              "      Upload widget is only available when the cell has been executed in the\n",
              "      current browser session. Please rerun this cell to enable.\n",
              "      </output>\n",
              "      <script>// Copyright 2017 Google LLC\n",
              "//\n",
              "// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
              "// you may not use this file except in compliance with the License.\n",
              "// You may obtain a copy of the License at\n",
              "//\n",
              "//      http://www.apache.org/licenses/LICENSE-2.0\n",
              "//\n",
              "// Unless required by applicable law or agreed to in writing, software\n",
              "// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
              "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
              "// See the License for the specific language governing permissions and\n",
              "// limitations under the License.\n",
              "\n",
              "/**\n",
              " * @fileoverview Helpers for google.colab Python module.\n",
              " */\n",
              "(function(scope) {\n",
              "function span(text, styleAttributes = {}) {\n",
              "  const element = document.createElement('span');\n",
              "  element.textContent = text;\n",
              "  for (const key of Object.keys(styleAttributes)) {\n",
              "    element.style[key] = styleAttributes[key];\n",
              "  }\n",
              "  return element;\n",
              "}\n",
              "\n",
              "// Max number of bytes which will be uploaded at a time.\n",
              "const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
              "\n",
              "function _uploadFiles(inputId, outputId) {\n",
              "  const steps = uploadFilesStep(inputId, outputId);\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  // Cache steps on the outputElement to make it available for the next call\n",
              "  // to uploadFilesContinue from Python.\n",
              "  outputElement.steps = steps;\n",
              "\n",
              "  return _uploadFilesContinue(outputId);\n",
              "}\n",
              "\n",
              "// This is roughly an async generator (not supported in the browser yet),\n",
              "// where there are multiple asynchronous steps and the Python side is going\n",
              "// to poll for completion of each step.\n",
              "// This uses a Promise to block the python side on completion of each step,\n",
              "// then passes the result of the previous step as the input to the next step.\n",
              "function _uploadFilesContinue(outputId) {\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  const steps = outputElement.steps;\n",
              "\n",
              "  const next = steps.next(outputElement.lastPromiseValue);\n",
              "  return Promise.resolve(next.value.promise).then((value) => {\n",
              "    // Cache the last promise value to make it available to the next\n",
              "    // step of the generator.\n",
              "    outputElement.lastPromiseValue = value;\n",
              "    return next.value.response;\n",
              "  });\n",
              "}\n",
              "\n",
              "/**\n",
              " * Generator function which is called between each async step of the upload\n",
              " * process.\n",
              " * @param {string} inputId Element ID of the input file picker element.\n",
              " * @param {string} outputId Element ID of the output display.\n",
              " * @return {!Iterable<!Object>} Iterable of next steps.\n",
              " */\n",
              "function* uploadFilesStep(inputId, outputId) {\n",
              "  const inputElement = document.getElementById(inputId);\n",
              "  inputElement.disabled = false;\n",
              "\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  outputElement.innerHTML = '';\n",
              "\n",
              "  const pickedPromise = new Promise((resolve) => {\n",
              "    inputElement.addEventListener('change', (e) => {\n",
              "      resolve(e.target.files);\n",
              "    });\n",
              "  });\n",
              "\n",
              "  const cancel = document.createElement('button');\n",
              "  inputElement.parentElement.appendChild(cancel);\n",
              "  cancel.textContent = 'Cancel upload';\n",
              "  const cancelPromise = new Promise((resolve) => {\n",
              "    cancel.onclick = () => {\n",
              "      resolve(null);\n",
              "    };\n",
              "  });\n",
              "\n",
              "  // Wait for the user to pick the files.\n",
              "  const files = yield {\n",
              "    promise: Promise.race([pickedPromise, cancelPromise]),\n",
              "    response: {\n",
              "      action: 'starting',\n",
              "    }\n",
              "  };\n",
              "\n",
              "  cancel.remove();\n",
              "\n",
              "  // Disable the input element since further picks are not allowed.\n",
              "  inputElement.disabled = true;\n",
              "\n",
              "  if (!files) {\n",
              "    return {\n",
              "      response: {\n",
              "        action: 'complete',\n",
              "      }\n",
              "    };\n",
              "  }\n",
              "\n",
              "  for (const file of files) {\n",
              "    const li = document.createElement('li');\n",
              "    li.append(span(file.name, {fontWeight: 'bold'}));\n",
              "    li.append(span(\n",
              "        `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
              "        `last modified: ${\n",
              "            file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
              "                                    'n/a'} - `));\n",
              "    const percent = span('0% done');\n",
              "    li.appendChild(percent);\n",
              "\n",
              "    outputElement.appendChild(li);\n",
              "\n",
              "    const fileDataPromise = new Promise((resolve) => {\n",
              "      const reader = new FileReader();\n",
              "      reader.onload = (e) => {\n",
              "        resolve(e.target.result);\n",
              "      };\n",
              "      reader.readAsArrayBuffer(file);\n",
              "    });\n",
              "    // Wait for the data to be ready.\n",
              "    let fileData = yield {\n",
              "      promise: fileDataPromise,\n",
              "      response: {\n",
              "        action: 'continue',\n",
              "      }\n",
              "    };\n",
              "\n",
              "    // Use a chunked sending to avoid message size limits. See b/62115660.\n",
              "    let position = 0;\n",
              "    do {\n",
              "      const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
              "      const chunk = new Uint8Array(fileData, position, length);\n",
              "      position += length;\n",
              "\n",
              "      const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
              "      yield {\n",
              "        response: {\n",
              "          action: 'append',\n",
              "          file: file.name,\n",
              "          data: base64,\n",
              "        },\n",
              "      };\n",
              "\n",
              "      let percentDone = fileData.byteLength === 0 ?\n",
              "          100 :\n",
              "          Math.round((position / fileData.byteLength) * 100);\n",
              "      percent.textContent = `${percentDone}% done`;\n",
              "\n",
              "    } while (position < fileData.byteLength);\n",
              "  }\n",
              "\n",
              "  // All done.\n",
              "  yield {\n",
              "    response: {\n",
              "      action: 'complete',\n",
              "    }\n",
              "  };\n",
              "}\n",
              "\n",
              "scope.google = scope.google || {};\n",
              "scope.google.colab = scope.google.colab || {};\n",
              "scope.google.colab._files = {\n",
              "  _uploadFiles,\n",
              "  _uploadFilesContinue,\n",
              "};\n",
              "})(self);\n",
              "</script> "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Saving roadnottaken.txt to roadnottaken.txt\n"
          ]
        }
      ],
      "source": [
        "# Run this cell then following the instructions to upload your file\n",
        "setup_drives(upload_setting)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2H-lunouHJSO"
      },
      "source": [
        "## Setup file path\n",
        "Now that you've make your files accessible, we need to select the files of interest. To do this, you'll use the Files pane on the left, following the instructions below to get the filepath. Then, you'll paste the filepath between the quotes below to define the `file_path` variable."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SEr4An0hHJSO"
      },
      "source": [
        "<center>\n",
        "<table width=\"100%\">\n",
        "    <tr>\n",
        "        <th width=\"35%\"> Step 1. Navigate to the three dots to the right <br> of your file name and click them. </th>\n",
        "        <th width=\"35%\"> Step 2. Once the dropdown appears,<br>select \"Copy Path.\" </th>\n",
        "        <th width=\"30%\"> Step 3. Paste the filepath between the single quotes<br> in the cell below to <br>define the file path. </th>\n",
        "    </tr>\n",
        "    <tr width=\"100%\">\n",
        "        <th width=\"35%\"> <img style=\"vertical-align: bottom;\" src=\"\"/> </th>\n",
        "        <th> <img style=\"vertical-align: bottom;\"  src=\"\" width=\"90%\"/> </th>\n",
        "        <th width=\"23%\"> Add your filepath to the cell which follows. <br>Example: <br><code>file_path = 'content/roadnottaken.txt'</code> </th>\n",
        "    </tr>\n",
        "</table>\n",
        "</center>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "id": "k9CDcM3pXsJv"
      },
      "outputs": [],
      "source": [
        "## Paste your file path into the empty string('') below\n",
        "#file_path = '/content/roadnottaken.txt' (example)\n",
        "\n",
        "file_path = '/content/roadnottaken.txt'"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lcvGcZBlPA_W"
      },
      "source": [
        "Congratulations! You've finished with the setup! From here, you can now run the rest of the cells to set up your vector store and begin prompting!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6Gf-_aZVPA_S"
      },
      "source": [
        "# Code Setup\n",
        "Run the following cells to setup the rest of the environment for prompting. In the following section, we set up the computational environment with imported code, setup your API key access to OpenAI, and loading access to your language model. Note that the following cells may take a long time to run."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6040J5eXPA_T"
      },
      "source": [
        "## Library installation and loading\n",
        "The following `pip install` code should be run if you're using Google Colab, or otherwise do not have a computational environment (e.g., _venv_, _conda virtual environment_, _Docker, Singularity, or other container_) with these packages installed."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "id": "7_XCtEMbPA_T",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "a4824f87-8686-429d-fade-84b4be1e0466"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m966.7/966.7 kB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.9/5.9 MB\u001b[0m \u001b[31m95.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m49.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.8/101.8 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m64.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m62.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.1/10.1 MB\u001b[0m \u001b[31m66.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m62.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.1/49.1 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m428.8/428.8 kB\u001b[0m \u001b[31m26.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.1/4.1 MB\u001b[0m \u001b[31m79.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m60.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m74.5/74.5 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.2/112.2 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.3/4.3 MB\u001b[0m \u001b[31m80.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m153.0/153.0 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Building wheel for hnswlib (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for python-docx (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for python-pptx (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for olefile (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "google-colab 1.0.0 requires requests==2.27.1, but you have requests 2.31.0 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0m"
          ]
        }
      ],
      "source": [
        "# run this code if you're using Google Colab or don't have these packages installed in your computing environment\n",
        "! pip install -q langchain=='0.0.229' openai gradio numpy chromadb tiktoken unstructured pdf2image pydantic==\"1.10.8\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "metadata": {
        "id": "6fdfMar8PA_U"
      },
      "outputs": [],
      "source": [
        "# import required libraries\n",
        "# import required libraries\n",
        "import numpy as np\n",
        "from langchain.text_splitter import CharacterTextSplitter\n",
        "from langchain.embeddings import OpenAIEmbeddings\n",
        "import os\n",
        "from langchain.vectorstores import Chroma\n",
        "from langchain.document_loaders.unstructured import UnstructuredFileLoader\n",
        "from langchain.document_loaders import UnstructuredFileLoader\n",
        "from langchain.chains import VectorDBQA\n",
        "from langchain.chat_models import ChatOpenAI\n",
        "# from langchain.chains import RetrievalQA"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5iI75yjaPA_V"
      },
      "source": [
        "## API and model setup\n",
        "\n",
        "Use these cells to load the API keys required for this notebook and create a basic OpenAI LLM model. The code below uses the variable you created above when you input your API Key."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "metadata": {
        "id": "8IgmjGEFPA_V"
      },
      "outputs": [],
      "source": [
        "# Set up OpenAI API Key\n",
        "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n",
        "llm = ChatOpenAI()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Zlx1_Y8rYGn3"
      },
      "source": [
        "# Create a vector store with your document\n",
        "\n",
        "With the file path, you can now create a vector store using the document that you uploaded. We expose this creation in case you want to modify the kind of vector store that you're creating. Run the cell below to create the default provided vector store."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "metadata": {
        "id": "mP2FvzurYGHH",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "f80a7ddb-2870-4b42-ca73-24acd9baa2fb"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Unzipping tokenizers/punkt.zip.\n",
            "[nltk_data] Downloading package averaged_perceptron_tagger to\n",
            "[nltk_data]     /root/nltk_data...\n",
            "[nltk_data]   Unzipping taggers/averaged_perceptron_tagger.zip.\n",
            "/usr/local/lib/python3.10/dist-packages/langchain/chains/retrieval_qa/base.py:243: UserWarning: `VectorDBQA` is deprecated - please use `from langchain.chains import RetrievalQA`\n",
            "  warnings.warn(\n"
          ]
        }
      ],
      "source": [
        "# Create vector store\n",
        "\n",
        "loader = UnstructuredFileLoader(file_path)\n",
        "documents = loader.load()\n",
        "\n",
        "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
        "texts = text_splitter.split_documents(documents)\n",
        "\n",
        "embeddings = OpenAIEmbeddings()\n",
        "\n",
        "db = Chroma.from_documents(texts, embeddings)\n",
        "\n",
        "qa = VectorDBQA.from_chain_type(llm=ChatOpenAI(model_name = mdl_name), chain_type=\"stuff\", vectorstore=db, k=1)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hLMJRXc8PA_W"
      },
      "source": [
        "# A guide to prompting for self-study\n",
        "In this section, we provide a number of different approaches for using AI to help you assess and explain the knowledge of your document. Start by interacting with the model and then try out the rest of the prompts!"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jNBwByBFaJVP"
      },
      "source": [
        "## Interact with the model\n",
        "\n",
        "Now that your vector store is created, you can begin interacting with the model! Below, we have a comprehensive list of examples using different question types, but feel free to use this code block to experiment with the model and the grading capabilities and interactivity component of the model.\n",
        "\n",
        "First, input the number of desired questions as an integer (i.e., do not put parentheses around the number). See example below:\n",
        "\n",
        "\n",
        "\n",
        "```\n",
        "num_questions = 3\n",
        "```\n",
        "\n",
        "\n",
        "\n",
        "Then , input your desired question type into the empty string in the code cell. See example below:\n",
        "\n",
        "\n",
        "\n",
        "```\n",
        "question_type = 'Multiple Choice'\n",
        "```\n",
        "\n",
        "Finally, simply run the code block!\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "outputs = []"
      ],
      "metadata": {
        "id": "zP3sEa121iwd"
      },
      "execution_count": 120,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": 121,
      "metadata": {
        "id": "4QBBlJI-adPf",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "e8f68868-2e2a-42f1-f96b-cb949db0f08a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "How many questions would you like?\n",
            "3\n",
            "What type of question would you like?\n",
            "multiple choice\n"
          ]
        }
      ],
      "source": [
        "# Experiment with interacting with the model by inputting your own prompts into the empty string below.\n",
        "input_message = 'How many questions would you like?' + '\\n'\n",
        "num_questions = int(input(input_message))\n",
        "# Example: 3\n",
        "\n",
        "input_message1 = 'What type of question would you like?' + '\\n'\n",
        "question_type = input(input_message1)\n",
        "# Example: 'Multiple Choice'\n",
        "\n",
        "query = 'Please design a ' + str(num_questions) + '-' + ' question quiz about the poem which reflects the learning objectives:' + '\\n' + '1. Identify the key elements of the poem: narrator, setting, and underlying message.' + '\\n' + '2. Understand the literary devices used in poetry and their purposes.' + '\\n' + 'The questions should be ' + question_type + '. Do not provide the answers.' + '\\n'\n",
        "\n",
        "query_prefix = \"The uploaded document should serve as the basis for the instructions that follow:\" + \"\\n\"\n",
        "\n",
        "question = qa.run(query_prefix + query)\n",
        "\n",
        "outputs = [('Model: ' + input_message), ('User: ' + str(num_questions)), '\\n', ('Model: ' + input_message1) , ('User: ' + question_type), '\\n', 'User: ', '\\n', query_prefix + query, '\\n', 'Model: ', '\\n', question, '\\n']\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Grading Interaction\n",
        "If you would like the model to grade your responses, you can use the following code cells to do so.\n",
        "\n",
        "Run the code cell to get a template for entering your answers and recieving feedback. Below is an example of what the template looks like.\n",
        "\n",
        "```\n",
        "answer_q1 = \"Question 1 answer: Your Answer Here\"\n",
        "grade_q1 = question + prompt + answer_q1\n",
        "feedback1 = qa.run(grade_q1)\n",
        "feedback1\n",
        "```\n",
        "\n",
        "The after running the cell, the ouput will print below the cell. Copy the entirity of the output. In the blank cell below, you will paste the output.\n",
        "\n",
        "The only change you will have to make to the template is your answer to the question. Input your answer over the \"Your Answer Here\" text. See the example below.\n",
        "\n",
        "```\n",
        "answer_q1 = \"Question 1 answer: A\"\n",
        "```"
      ],
      "metadata": {
        "id": "gXjrc9XGsa7q"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Run this cell to input your answers\n",
        "print(question)\n",
        "print()\n",
        "\n",
        "for x in range(0, num_questions, 1):\n",
        "  q_answer = 'What is your answer to question ' + str(x + 1) + \"? \" + '\\n'\n",
        "  answer = input(q_answer)\n",
        "  globals()['answer%s' % x] = answer\n",
        "  outputs.append('Model: ' + q_answer)\n",
        "  outputs.append('User: ' + answer)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "hWecBtHK2Elu",
        "outputId": "b0ecc1e9-a00a-4a00-c82e-0f90736821e8"
      },
      "execution_count": 122,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "1. What is the underlying message of the poem \"The Road Not Taken\"?\n",
            "A. Always choose the path less traveled.\n",
            "B. It's important to make decisions quickly.\n",
            "C. All paths lead to the same destination.\n",
            "\n",
            "2. Who is the narrator of the poem?\n",
            "A. Robert Frost\n",
            "B. A traveler in a yellow wood\n",
            "C. The undergrowth\n",
            "\n",
            "3. Which literary device is used in the line \"Two roads diverged in a yellow wood\"?\n",
            "A. Simile\n",
            "B. Metaphor\n",
            "C. Personification\n",
            "\n",
            "What is your answer to question 1? \n",
            "A\n",
            "What is your answer to question 2? \n",
            "A\n",
            "What is your answer to question 3? \n",
            "A\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Grading cell - Run without making changes. Copy the output and paste into empty cell below.\n",
        "\n",
        "prompt = \"Please grade my quiz based on the question you produced and my answer. If I am correct, please answer 'You are correct.'. If I am incorrect, do not provide an explanation: you should simply respond 'You are incorrect. The right answer is (the right answer)'. Here is a template for a correct answer: 'You are correct.' Here is a template for an incorrect answer: 'You are incorrect, the correct answer is C.' Do not include any context from the question, and any of the answers.\"\n",
        "\n",
        "def answer_template(num_questions):\n",
        "  print('total_feedback = []')\n",
        "  for x in range(0, num_questions, 1):\n",
        "    print('answer_q' + str(x + 1) + ' = ' + '\"Question ' + str(x + 1) +  ' answer:\" ' + '+ ' + ('answer' + str(x)))\n",
        "    print('grade_q' + str(x + 1) + ' = question + prompt + answer_q' + str(x + 1))\n",
        "    print('feedback' + str(x + 1) + ' = qa.run(grade_q' + str(x + 1) + ')' )\n",
        "    print('feedback' + str(x + 1))\n",
        "    print('total_feedback.append(feedback' + str(x + 1) + ')')\n",
        "    print()\n",
        "  print('print(total_feedback)')\n",
        "\n",
        "template = answer_template(num_questions)\n",
        "template\n"
      ],
      "metadata": {
        "id": "TkaahAGoUNIi",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "c65a28cd-397c-42fa-f467-0badd1196817"
      },
      "execution_count": 123,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "total_feedback = []\n",
            "answer_q1 = \"Question 1 answer:\" + answer0\n",
            "grade_q1 = question + prompt + answer_q1\n",
            "feedback1 = qa.run(grade_q1)\n",
            "feedback1\n",
            "total_feedback.append(feedback1)\n",
            "\n",
            "answer_q2 = \"Question 2 answer:\" + answer1\n",
            "grade_q2 = question + prompt + answer_q2\n",
            "feedback2 = qa.run(grade_q2)\n",
            "feedback2\n",
            "total_feedback.append(feedback2)\n",
            "\n",
            "answer_q3 = \"Question 3 answer:\" + answer2\n",
            "grade_q3 = question + prompt + answer_q3\n",
            "feedback3 = qa.run(grade_q3)\n",
            "feedback3\n",
            "total_feedback.append(feedback3)\n",
            "\n",
            "print(total_feedback)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Copy the output here\n",
        "\n",
        "total_feedback = []\n",
        "answer_q1 = \"Question 1 answer:\" + answer0\n",
        "grade_q1 = question + prompt + answer_q1\n",
        "feedback1 = qa.run(grade_q1)\n",
        "feedback1\n",
        "total_feedback.append(feedback1)\n",
        "\n",
        "answer_q2 = \"Question 2 answer:\" + answer1\n",
        "grade_q2 = question + prompt + answer_q2\n",
        "feedback2 = qa.run(grade_q2)\n",
        "feedback2\n",
        "total_feedback.append(feedback2)\n",
        "\n",
        "answer_q3 = \"Question 3 answer:\" + answer2\n",
        "grade_q3 = question + prompt + answer_q3\n",
        "feedback3 = qa.run(grade_q3)\n",
        "feedback3\n",
        "total_feedback.append(feedback3)\n",
        "\n",
        "answers_total = []\n",
        "x = 1\n",
        "for i in total_feedback:\n",
        "  answer_print = (str(x) +  \". \" + i)\n",
        "  print(answer_print)\n",
        "  answers_total.append(answer_print)\n",
        "  x = x + 1\n",
        "\n",
        "for i in answers_total:\n",
        "  outputs.append('Model: ' + i)"
      ],
      "metadata": {
        "id": "DDti3ZjP0KS4",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "ab7ea6a7-379f-48b8-ee28-87d3cfb4cacd"
      },
      "execution_count": 124,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "1. You are incorrect, the correct answer is C.\n",
            "2. You are correct.\n",
            "3. You are incorrect, the correct answer is B.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Recieve your grade!\n",
        "\n",
        "Run the following cell to recieve your grade in a percentage form."
      ],
      "metadata": {
        "id": "Kt1DgnOn5f3h"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import math\n",
        "\n",
        "def points_add(feedback):\n",
        "  points = []\n",
        "  for answer in feedback:\n",
        "    if answer == \"You are correct.\":\n",
        "      points = points + [1]\n",
        "    else:\n",
        "      points = points\n",
        "  return points\n",
        "\n",
        "points_list = points_add(total_feedback)\n",
        "\n",
        "def sum_points(points):\n",
        "  sum_total = sum(points)\n",
        "  return sum_total\n",
        "\n",
        "total = sum_points(points_list)\n",
        "\n",
        "def grade_percent(total, num_questions):\n",
        "  percent = (total / num_questions) * 100\n",
        "  return percent\n",
        "\n",
        "percent = grade_percent(total, num_questions)\n",
        "\n",
        "if percent > 80:\n",
        "  more_than_80 = 'Nice job! Your score was ' + str(round(percent)) + '%'\n",
        "  print(more_than_80)\n",
        "  outputs.append('Model: ' + more_than_80)\n",
        "elif percent < 80 and percent > 60:\n",
        "  more_than_60 = \"You're getting there! Your score was \" + str(round(percent)) + '%'\n",
        "  print(more_than_60)\n",
        "  outputs.append('Model: ' + more_than_60)\n",
        "else:\n",
        "  less_than_60 = 'Keep studying! Your score was ' + str(round(percent)) + '%'\n",
        "  print(less_than_60)\n",
        "  outputs.append('Model: ' + less_than_60)\n",
        "\n"
      ],
      "metadata": {
        "id": "3C2fYmXTW09Q",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "4e89e4e8-36bd-450b-e1fe-9a12aeba9774"
      },
      "execution_count": 125,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Keep studying! Your score was 33%\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Keep chatting with the model!\n",
        "\n",
        "Below are some examples of ways you can continue to interact with the model and recieve more feedback!\n"
      ],
      "metadata": {
        "id": "upOxT3zRRuHS"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Ask about a specific question\n",
        "\n",
        "First, input the question you would like further elaboration on (input the question number).\n",
        "\n",
        "Next, input your prompt. What part of the question would you like further explanation on? Below is an example prompt.\n",
        "\n",
        "\n",
        "\n",
        "```\n",
        "Can you please explain elaborate on the correct answer for question 1?\n",
        "```\n",
        "\n",
        "The prompt can be as broad or as specific as you would like. However, more specific questions will likely yield a better response from the model!\n",
        "\n",
        "### Follow-up\n",
        "\n",
        "You can also ask a follow-up question if you are still struggling to understand specific parts of the question. Another input box will appear. If you would like to ask further questions, type \"Yes.\" Another input box will appear where you can ask further questions. If you type \"No\", the interaction with the model will cease."
      ],
      "metadata": {
        "id": "6inO1r5ha48l"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "which_question = 'Input the question number you would like feedback on here! ' + '\\n'\n",
        "question_number = int(input(which_question))\n",
        "# Example = 1\n",
        "outputs.append('Model: ' + which_question)\n",
        "outputs.append('User: ' + str(question_number))\n",
        "\n",
        "def feedback_assign(question_number, feedback_list):\n",
        "  for i in total_feedback:\n",
        "    if feedback_list.index(i) == (question_number - 1) :\n",
        "      feedback = 'feedback' + 'question_number + 1'\n",
        "    else:\n",
        "      pass\n",
        "  return feedback\n",
        "\n",
        "query_input = 'How can I help you better understand the answer to this question? ' + '\\n'\n",
        "outputs.append('Model: ' + query_input)\n",
        "query = input(query_input)\n",
        "# Example: 'Can you please explain elaborate on the correct answer for question 1?'\n",
        "outputs.append('User: ' + query)\n",
        "\n",
        "response = qa.run(question + feedback_assign(question_number, total_feedback) + query)\n",
        "print(response)\n",
        "outputs.append('Model: ' + response)\n",
        "\n",
        "any_followup = 'Would you like to ask any follow-up questions about my response?' + '\\n'\n",
        "outputs.append('Model: ' + any_followup)\n",
        "more_questions = input(any_followup)\n",
        "outputs.append('User: ' + more_questions)\n",
        "if more_questions == \"No\":\n",
        "    no = 'Great! I am happy that I could assist you in your learning.'\n",
        "    outputs.append('Model: ' + no)\n",
        "    print(no)\n",
        "while more_questions == 'Yes':\n",
        "    outputs.append('User: ' + more_questions)\n",
        "    query2_input = \"What further questions do you have about question \" + str(question_number) + '?' + '\\n'\n",
        "    outputs.append('Model: ' + query2_input)\n",
        "    second_query = input()\n",
        "    response1 = qa.run(question + feedback_assign(question_number, total_feedback) + response + second_query)\n",
        "    outputs.append('User: ' + second_query)\n",
        "    outputs.append('Model: ' + response1)\n",
        "    print(response1)\n",
        "    more_questions = input('Would you like to ask any follow-up questions about my response?' + '\\n')\n",
        "    if more_questions == \"No\":\n",
        "      no1 = 'Great! I am happy that I could assist you in your learning.'\n",
        "      outputs.append('Model: ' + more_questions)\n",
        "      outputs.append('User: ' + no1)\n",
        "      print(no1)\n",
        "      break"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "GwZLIJZKRx9p",
        "outputId": "6d8b06c0-d5d4-44d2-d405-d28c82b0ac20"
      },
      "execution_count": 126,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Input the question number you would like feedback on here! \n",
            "1\n",
            "How can I help you better understand the answer to this question? \n",
            "Why was my answer to question 1 incorrect?\n",
            "I'm sorry, there seems to be an error. I did not provide an answer to your questions yet. Please provide the questions again.\n",
            "Would you like to ask any follow-up questions about my response?\n",
            "No\n",
            "Great! I am happy that I could assist you in your learning.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Ask further questions about the context\n",
        "\n",
        "You can also ask the model more follow-up questions about the context, unrelated to the questions it produced or your answers. Simpl input"
      ],
      "metadata": {
        "id": "a8n5bwK1azHk"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "input_message2 = 'What else can I assist you with? If you have no further questions, please answer \"Nothing\".' + '\\n'\n",
        "outputs.append('Model: ' + input_message2)\n",
        "query = input(input_message2)\n",
        "outputs.append('User: ' + query)\n",
        "\n",
        "if query == \"Nothing\":\n",
        "  nothing = \"Great! I am happy I could assist you in your learning\"\n",
        "  print(nothing)\n",
        "  outputs.append('Model: ' + nothing)\n",
        "else:\n",
        "  follow_up = qa.run(query)\n",
        "  outputs.append('Model: ' + follow_up)\n",
        "  print(follow_up)\n",
        "  more_assist = 'Is there anything else I can assist you with? Please answer \"Yes\" or \"No\".' + '\\n'\n",
        "  more_follow_up = input(more_assist)\n",
        "  while more_follow_up == 'Yes':\n",
        "    outputs.append(\"User: \" + more_follow_up)\n",
        "    more_further = \"What further questions do you have?\" + '\\n'\n",
        "    query = input(more_further)\n",
        "    outputs.append('Model: ' + more_further)\n",
        "    outputs.append(\"User: \" + query)\n",
        "    follow_up = qa.run(query)\n",
        "    outputs.append('Model: ' + follow_up)\n",
        "    print(follow_up)\n",
        "    more_questions_again = 'Would you like to ask any follow-up questions about my response? Please answer \"Yes\" or \"No\".' + '\\n'\n",
        "    more_questions = input(more_questions_again)\n",
        "    outputs.append(\"Model: \" + more_questions_again)\n",
        "    outputs.append(\"User: \" + more_questions)\n",
        "    if more_questions == \"No\":\n",
        "      no_more = 'Great! I am happy that I could assist you in your learning.'\n",
        "      print(no_more)\n",
        "      outputs.append(\"Model: \" + no_more)\n",
        "      break"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "PH0uHBJLSQuG",
        "outputId": "68ca1a86-a066-473f-8fd7-86fc1c5bdaff"
      },
      "execution_count": 127,
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "What else can I assist you with? If you have no further questions, please answer \"Nothing\".\n",
            "What is the importance of metaphors in poetry?\n",
            "Metaphors are a powerful tool in poetry as they help to create images and comparisons that allow readers to understand and feel emotions that are not directly stated. By comparing two seemingly unrelated things, poets can create a deeper understanding of the subject matter and allow readers to connect with the poem on a more personal level. Overall, metaphors bring depth and richness to poetry, making it a more enjoyable and meaningful experience for readers.\n",
            "Is there anything else I can assist you with? Please answer \"Yes\" or \"No\".\n",
            "No\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "for i in outputs:\n",
        "  print(i)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "eQf_WZlyvp07",
        "outputId": "5e9b6174-7da4-42f5-e560-ebdea81dab4f"
      },
      "execution_count": 128,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Model: How many questions would you like?\n",
            "\n",
            "User: 3\n",
            "\n",
            "\n",
            "Model: What type of question would you like?\n",
            "\n",
            "User: multiple choice\n",
            "\n",
            "\n",
            "User: \n",
            "\n",
            "\n",
            "The uploaded document should serve as the basis for the instructions that follow:\n",
            "Please design a 3- question quiz about the poem which reflects the learning objectives:\n",
            "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
            "2. Understand the literary devices used in poetry and their purposes.\n",
            "The questions should be multiple choice. Do not provide the answers.\n",
            "\n",
            "\n",
            "\n",
            "Model: \n",
            "\n",
            "\n",
            "1. What is the underlying message of the poem \"The Road Not Taken\"?\n",
            "A. Always choose the path less traveled.\n",
            "B. It's important to make decisions quickly.\n",
            "C. All paths lead to the same destination.\n",
            "\n",
            "2. Who is the narrator of the poem?\n",
            "A. Robert Frost\n",
            "B. A traveler in a yellow wood\n",
            "C. The undergrowth\n",
            "\n",
            "3. Which literary device is used in the line \"Two roads diverged in a yellow wood\"?\n",
            "A. Simile\n",
            "B. Metaphor\n",
            "C. Personification\n",
            "\n",
            "\n",
            "Model: What is your answer to question 1? \n",
            "\n",
            "User: A\n",
            "Model: What is your answer to question 2? \n",
            "\n",
            "User: A\n",
            "Model: What is your answer to question 3? \n",
            "\n",
            "User: A\n",
            "Model: 1. You are incorrect, the correct answer is C.\n",
            "Model: 2. You are correct.\n",
            "Model: 3. You are incorrect, the correct answer is B.\n",
            "Model: Keep studying! Your score was 33%\n",
            "Model: Input the question number you would like feedback on here! \n",
            "\n",
            "User: 1\n",
            "Model: How can I help you better understand the answer to this question? \n",
            "\n",
            "User: Why was my answer to question 1 incorrect?\n",
            "Model: I'm sorry, there seems to be an error. I did not provide an answer to your questions yet. Please provide the questions again.\n",
            "Model: Would you like to ask any follow-up questions about my response?\n",
            "\n",
            "User: No\n",
            "Model: Great! I am happy that I could assist you in your learning.\n",
            "Model: What else can I assist you with? If you have no further questions, please answer \"Nothing\".\n",
            "\n",
            "User: What is the importance of metaphors in poetry?\n",
            "Model: Metaphors are a powerful tool in poetry as they help to create images and comparisons that allow readers to understand and feel emotions that are not directly stated. By comparing two seemingly unrelated things, poets can create a deeper understanding of the subject matter and allow readers to connect with the poem on a more personal level. Overall, metaphors bring depth and richness to poetry, making it a more enjoyable and meaningful experience for readers.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# convert to json\n",
        "import json\n",
        "from google.colab import files\n",
        "\n",
        "def save_chat_dialogue(outputs, filename='chat_dialogue.json'):\n",
        "  with open(filename, 'w') as file:\n",
        "    json.dump(outputs, file)\n",
        "  files.download(filename)\n",
        "\n",
        "save_chat_dialogue(outputs)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 17
        },
        "id": "cSWM6VM-CYD_",
        "outputId": "b31bd875-416c-4ff3-cf68-f8eb633acf69"
      },
      "execution_count": 131,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "\n",
              "    async function download(id, filename, size) {\n",
              "      if (!google.colab.kernel.accessAllowed) {\n",
              "        return;\n",
              "      }\n",
              "      const div = document.createElement('div');\n",
              "      const label = document.createElement('label');\n",
              "      label.textContent = `Downloading \"${filename}\": `;\n",
              "      div.appendChild(label);\n",
              "      const progress = document.createElement('progress');\n",
              "      progress.max = size;\n",
              "      div.appendChild(progress);\n",
              "      document.body.appendChild(div);\n",
              "\n",
              "      const buffers = [];\n",
              "      let downloaded = 0;\n",
              "\n",
              "      const channel = await google.colab.kernel.comms.open(id);\n",
              "      // Send a message to notify the kernel that we're ready.\n",
              "      channel.send({})\n",
              "\n",
              "      for await (const message of channel.messages) {\n",
              "        // Send a message to notify the kernel that we're ready.\n",
              "        channel.send({})\n",
              "        if (message.buffers) {\n",
              "          for (const buffer of message.buffers) {\n",
              "            buffers.push(buffer);\n",
              "            downloaded += buffer.byteLength;\n",
              "            progress.value = downloaded;\n",
              "          }\n",
              "        }\n",
              "      }\n",
              "      const blob = new Blob(buffers, {type: 'application/binary'});\n",
              "      const a = document.createElement('a');\n",
              "      a.href = window.URL.createObjectURL(blob);\n",
              "      a.download = filename;\n",
              "      div.appendChild(a);\n",
              "      a.click();\n",
              "      div.remove();\n",
              "    }\n",
              "  "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "download(\"download_de31663e-1a11-49d0-902c-b13850f0ff74\", \"chat_dialogue.json\", 2549)"
            ]
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# **Prompt Examples**"
      ],
      "metadata": {
        "id": "htQA3KUk1zzH"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KYro6H82bENS"
      },
      "source": [
        "## Types of Questions and Prompts\n",
        "\n",
        "Below is a comprehensive list of question types and prompt templates designed by our team. There are also example code blocks, where you can see how the model performed with the example and try it for yourself using the prompt template."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WAUSc7qJPA_X"
      },
      "source": [
        "### Multiple Choice\n",
        "\n",
        "Prompt: The following text should be used as the basis for the instructions which follow: {context}. Please design a 5 question quiz about {name or reference to context} which reflects the learning objectives: {list of learning objectives}. The questions should be multiple choice. If I get an answer wrong, provide me with an explanation of why it was incorrect, and then give me additional chances to respond until I get the correct choice. Explain why the correct choice is right."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "nFMRDL4cPA_X"
      },
      "outputs": [],
      "source": [
        "# Multiple choice code example\n",
        "query = \"\"\"Please design a 5 question quiz about Robert Frost's \"Road Not Taken\" which reflects the learning objectives:\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes. The questions should be multiple choice.\n",
        "If I get an answer wrong, provide me with an explanation of why it was incorrect, and then give me additional\n",
        "chances to respond until I get the correct choice. Explain why the correct choice is right. \"\"\"\n",
        "\n",
        "query_prefix = \"The uploaded document should serve as the basis for the instructions that follow:\"\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WkSIU94GPA_Y"
      },
      "source": [
        "### Short Answer\n",
        "\n",
        "Prompt: Please design a 5-question quiz about {context} which reflects the learning objectives: {list of learning objectives}. The questions should be short answer. Expect the correct answers to be {anticipated length} long. If I get any part of the answer wrong, provide me with an explanation of why it was incorrect, and then give me additional chances to respond until I get the correct choice."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "enC8ydfEPA_Y"
      },
      "outputs": [],
      "source": [
        "# Short answer code example\n",
        "query = \"\"\" Please design a 5-question quiz about Robert Frost's\n",
        "\"Road Not Taken\" which reflects the learning objectives:\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes.\n",
        "The questions should be short answer. Expect the correct answers to be\n",
        "1-2 sentences long. If I get any part of the answer wrong,\n",
        "provide me with an explanation of why it was incorrect,\n",
        "and then give me additional chances to respond until I get the correct choice. \"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ta4A527kPA_Y"
      },
      "source": [
        "### Fill-in-the-blank\n",
        "\n",
        "Prompt: Create a 5 question fill in the blank quiz refrencing {context}. The quiz should reflect the learning objectives: {learning objectives}. Please prompt me one question at a time and proceed when I answer correctly. If I answer incorrectly, please explain why my answer is incorrect."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "szMOxEoiPA_Z"
      },
      "outputs": [],
      "source": [
        "# Fill in the blank code example\n",
        "query = \"\"\" Create a 5 question fill in the blank quiz refrencing Robert Frost's \"The Road Not Taken.\"\n",
        "The quiz should reflect the learning objectives:\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes.\n",
        "Please prompt me one question at a time and proceed when I answer correctly.\n",
        "If I answer incorrectly, please explain why my answer is incorrect. \"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yEwzAB28PA_Z"
      },
      "source": [
        "### Sequencing\n",
        "\n",
        "Prompt: Please develop a 5 question questionnaire that will ask me to recall the steps involved in the following learning objectives in regard to {context}: {learning objectives}. After I respond, explain their sequence to me."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3YRyhhWtPA_Z"
      },
      "outputs": [],
      "source": [
        "# Sequence example\n",
        "query = \"\"\" Please develop a 5 question questionnaire that will ask me to recall the steps involved in the following learning objectives in regard to Robert Frost's \"The Road Not Taken\":\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes.\n",
        "After I respond, explain their sequence to me.\"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0DGBiJofPA_Z"
      },
      "source": [
        "### Relationships/drawing connections\n",
        "\n",
        "Prompt: Please design a 5 question quiz that asks me to explain the relationships that exist within the following learning objectives, referencing {context}: {learning objectives}."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Mw3RBpsnPA_a"
      },
      "outputs": [],
      "source": [
        "# Relationships example\n",
        "query = \"\"\" Please design a 5 question quiz that asks me to explain the relationships that exist within the following learning objectives, referencing Robert Frost's \"The Road Not Taken\":\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes.\"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4YO3wCTwPA_a"
      },
      "source": [
        "### Concepts and Definitions\n",
        "\n",
        "Prompt: Design a 5 question quiz that asks me about definitions related to the following learning objectives: {learning objectives} - based on {context}\".\n",
        "Once I write out my response, provide me with your own response, highlighting why my answer is correct or incorrect."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "TbvJPhkmPA_a"
      },
      "outputs": [],
      "source": [
        "# Concepts and definitions example\n",
        "query = \"\"\" Design a 5 question quiz that asks me about definitions related to the following learning objectives:\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message, and\n",
        "2. Understand the literary devices used in poetry and their purposes - based on Robert Frost's \"The Road Not Taken\".\n",
        "Once I write out my response, provide me with your own response, highlighting why my answer is correct or incorrect.\"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vc-llAgfPA_a"
      },
      "source": [
        "### Real Word Examples\n",
        "\n",
        "Prompt: Demonstrate how {context} can be applied to solve a real-world problem related to the following learning objectives: {learning objectives}. Ask me questions regarding this theory/concept."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "sSwRLkR8PA_a"
      },
      "outputs": [],
      "source": [
        "# Real word example\n",
        "query = \"\"\" Demonstrate how Robert Frost’s “The Road Not Taken” can be applied to solve a real-world problem related to the following learning objectives:\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes.\n",
        "Ask me questions regarding this theory/concept.\"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2y6gHhGKPA_b"
      },
      "source": [
        "### Randomized Question Types\n",
        "\n",
        "Prompt: Please generate a high-quality assessment consisting of 5 varying questions, each of different types (open-ended, multiple choice, etc.), to determine if I achieved the following learning objectives in regards to {context}: {learning objectives}. If I answer incorrectly for any of the questions, please explain why my answer is incorrect."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "xC4t4WMwPA_b"
      },
      "outputs": [],
      "source": [
        "# Randomized question types\n",
        "query = \"\"\" Please generate a high-quality assessment consisting of 5 varying questions,\n",
        "each of different types (open-ended, multiple choice, etc.),\n",
        "to determine if I achieved the following learning objectives in regards to Robert Frost’s “The Road not Taken\":\n",
        "1. Identify the key elements of the poem: narrator, setting, and underlying message.\n",
        "2. Understand the literary devices used in poetry and their purposes. If I answer incorrectly for any of the questions,\n",
        "please explain why my answer is incorrect.\"\"\"\n",
        "\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ndo_cdWYPA_b"
      },
      "source": [
        "### Quantiative evaluation the correctness of a student's answer\n",
        "\n",
        "Prompt: (A continuation of the previous chat) Please generate the main points of the student’s answer to the previous question, and evaluate on a scale of 1 to 5 how comprehensive the student’s answer was in relation to the learning objectives, and explain why he or she received this rating, including what was missed in his or her answer if the student’s answer wasn’t complete.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "WhhNI0FZPA_b"
      },
      "outputs": [],
      "source": [
        "# qualitative evaluation\n",
        "qualitative_query = \"\"\" Please generate the main points of the student’s answer to the previous question,\n",
        " and evaluate on a scale of 1 to 5 how comprehensive the student’s answer was in relation to the learning objectives,\n",
        " and explain why he or she received this rating, including what was missed in his or her answer if the student’s answer wasn’t complete.\"\"\"\n",
        "\n",
        "# Note that this uses the previous result and query in the context\n",
        "answer = qa.run(query_prefix + query)\n",
        "print(answer)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.7.12"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}