Spaces:
Configuration error
Configuration error
File size: 33,009 Bytes
28e2c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "HpzC9I3uDBud"
},
"source": [
"<a href=\"https://colab.research.google.com/github/vanderbilt-data-science/lo-achievement/blob/main/instructor_vector_store_creator.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hbthVGIgDBug"
},
"source": [
"# Creating a Shared Vector Store (for Instructors)\n",
"\n",
"This notebook is for instructors to create a *vector store* which contains all of the information necessary for students to generate their own self-study materials using large language models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NpYSvDgzDBuh"
},
"source": [
"## Using This Notebook\n",
"This notebook is split up into a bunch of *cells*, which contain explanations / instructions or code. You should go through the cells in order from top to bottom.\n",
"\n",
"When you encounter a code cell, hover the mouse over it and press the 'run' button (the circle with a triangle inside of it) to execute the code in the cell. Wait until the green checkmark appears to the right of the run button before proceeding to the next cell.\n",
"\n",
"Run the following code block to test it out. It should display `4` below the code.\n",
"\n",
"*Note: Before running, there may be a pop-up saying 'Warning: This notebook was not authored by Google'. In that case, click 'Run anyways'.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ACE73ZmZDBuh"
},
"outputs": [],
"source": [
"print(2+2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dTrRB_2rDBui"
},
"source": [
"## Importing Libraries\n",
"Continue running the code below. Ignore any warnings that pop up."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0MHRWInBDBuj"
},
"outputs": [],
"source": [
"# install libraries here\n",
"# -q flag for \"quiet\" install\n",
"!pip install -q langchain openai unstructured tiktoken deeplake trafilatura justext yt_dlp pydub"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2FpSOOlEDBuk"
},
"outputs": [],
"source": [
"# import libraries here\n",
"import os\n",
"\n",
"from google.colab import files\n",
"from getpass import getpass\n",
"from IPython.display import display, Markdown\n",
"\n",
"import openai\n",
"from langchain.docstore.document import Document\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.document_loaders.unstructured import UnstructuredFileLoader\n",
"\n",
"from langchain.document_loaders.generic import GenericLoader\n",
"from langchain.document_loaders.parsers import OpenAIWhisperParser\n",
"from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader\n",
"\n",
"from langchain.document_loaders import WebBaseLoader\n",
"import trafilatura\n",
"import requests\n",
"import justext\n",
"\n",
"import deeplake\n",
"from langchain.vectorstores import DeepLake"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TIFQUXspDBul"
},
"source": [
"## Setting Up API Access\n",
"Much of the following code rely on certain *APIs* (application programming interfaces) which have limited access. You will need to get an *API key* for each of those services which will be inserted into the code to let the service know you are an authorized user."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vKXV9FubDBum"
},
"source": [
"#### OpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GG9GwadDDBuo"
},
"source": [
"First, you will need an **OpenAI API key**. To do this:\n",
"1. Visit [platform.openai.com/account/api-keys](https://platform.openai.com/account/api-keys) and sign up for an account.\n",
"2. Click 'Create a secret API key', and give it any name you want.\n",
"3. Copy the newly created key, either by right-clicking and pressing 'Copy' or using the keyboard shortcut -- Ctrl+C on Windows, Cmd+C on a Mac.\n",
"\n",
"Run the following code cell. You'll see a blank text box pop up -- paste your API key there (using the shortcut Ctrl+V on Windows, or Cmd+V if you are using a Mac) and press Enter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Dv3l_ZKiDBup"
},
"outputs": [],
"source": [
"OPENAI_API_KEY = getpass(\"OpenAI API key: \")\n",
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY\n",
"openai.api_key = OPENAI_API_KEY"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1Xbl8szQDBup"
},
"source": [
"#### DeepLake\n",
"\n",
"Next, you will need to input a **DeepLake API key**, found in the DeepLake dashboard at [app.activeloop.ai](https://app.activeloop.ai).\n",
"\n",
"1. Click the link above and create an account.\n",
"2. After making an account, you will be prompted to set a username. Once you have set your username, copy it, run the code below, paste the username into the text box, and press Enter. (This username will be shared with students.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rfzGVvm-DBup"
},
"outputs": [],
"source": [
"DEEPLAKE_USERNAME = input(\"DeepLake username: \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "o9_N6ychDBur"
},
"source": [
"3. You should then be on the DeepLake dashboard. At the top, click 'Create API token'. You should see an empty table with the columns 'Name', 'Expiration date', and 'Token'.\n",
"4. Click the 'Create API token' button  at the right of the page, choose a name for the token, then click 'Create API token'. (You do not need to change the expiration date.)\n",
"5. Afterwards, you should see the table look something like this:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ivyqa05xDBur"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WSI47-j0DBur"
},
"source": [
"6. Click the two overlaid squares  to copy the API key; then run the code below and paste it into the input text box and press Enter."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uNA8U5gvDBus"
},
"outputs": [],
"source": [
"os.environ['ACTIVELOOP_TOKEN'] = getpass(\"DeepLake API key: \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8CmfEgseDBus"
},
"source": [
"Finally, pick a name for your dataset. It doesn't matter what this is, but keep in mind that it will be shared with the students."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dosq4FolDBus"
},
"outputs": [],
"source": [
"dataset_name = input(\"Enter a name for your dataset: \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m0zs864gDBut"
},
"source": [
"## Processing The Document(s)\n",
"\n",
"In this part, you will upload the documents you want the students / model to reference; the embeddings will be created from those documents.\n",
"\n",
"**Note: The embeddings of all the documents you share will be publicly available. Do not use this for any documents you want to keep private.**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eOEJ7rnlDBut"
},
"source": [
"First, upload your documents to Google Colab. To do this:\n",
"1. Click on the 'file' icon  at the bottom of the sidebar to the left of these instructions.\n",
"2. Click on the 'upload file' icon  on the left of the Files toolbar.\n",
"3. Select all of the files you want to upload, then click 'Open'.\n",
"4. A warning should pop up. Click 'OK' to continue.\n",
"5. Wait until the spinning circle in the bottom of the 'Files' section disappears. This means that all of the files have been uploaded."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hcRqREcvIeY7"
},
"source": [
"### Adding YouTube Videos / Websites\n",
"If you have any websites or YouTube videos which also contain content which you want to put into your data lake, paste those links one at a time into the text box below, pressing 'Enter' after each one. Once you have entered all the links, press 'Enter' without typing anything to finish execution of the code cell.\n",
"\n",
"If you have no URLs to add, just click on the box and press 'Enter' without typing anything."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "19tljTkqIiz9"
},
"outputs": [],
"source": [
"url_list = []\n",
"while (url := input(\"Enter a YouTube / website link: \")): url_list.append(url)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qAVRPqDsDBuu"
},
"source": [
"## Embedding & Database Creation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_N4erDDkDBuu"
},
"source": [
"Finally, run the following code."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "G2DNpm5dDqJ8"
},
"outputs": [],
"source": [
"# Functions to extract the text from YouTube videos / websites\n",
"def save_text(text, text_name = None):\n",
" if not text_name: text_name = text[:20]\n",
" text_path = os.path.join(\"/content\",text_name+\".txt\")\n",
" with open(text_path, \"x\") as f:\n",
" f.write(text)\n",
" # Return the location at which the transcript is saved\n",
" return text_path\n",
"\n",
"def save_youtube_transcript(url, save_dir = \"sample_data\"):\n",
" # Transcribe the videos to text and save to file in /content\n",
" # save_dir: directory to save audio files\n",
" youtube_loader = GenericLoader(YoutubeAudioLoader([url], save_dir),\n",
" OpenAIWhisperParser())\n",
" youtube_docs = youtube_loader.load()\n",
" # Combine doc\n",
" combined_docs = [doc.page_content for doc in youtube_docs]\n",
" text = \" \".join(combined_docs)\n",
" # Save text to file\n",
" video_path = youtube_docs[0].metadata[\"source\"]\n",
" youtube_name = os.path.splitext(os.path.basename(video_path))[0]\n",
" return save_text(text, youtube_name)\n",
"\n",
"# Multiple ways of extracting web content\n",
"\n",
"def website_webbase(url):\n",
" website_loader = WebBaseLoader(url)\n",
" website_data = website_loader.load()\n",
" # Combine doc\n",
" combined_docs = [doc.page_content for doc in website_data]\n",
" text = \" \".join(combined_docs)\n",
" return text\n",
"\n",
"def website_trafilatura(url):\n",
" downloaded = trafilatura.fetch_url(url)\n",
" return trafilatura.extract(downloaded)\n",
"\n",
"def website_justext(url):\n",
" response = requests.get(url)\n",
" paragraphs = justext.justext(response.content, justext.get_stoplist(\"English\"))\n",
" content = [paragraph.text for paragraph in paragraphs \\\n",
" if not paragraph.is_boilerplate]\n",
" text = \" \".join(content)\n",
" return text\n",
"\n",
"def get_website_youtube_text_file(urls):\n",
" for url in urls:\n",
" # This is a bit of a hacky way to determine whether it's youtube video\n",
" if \"youtube.com\" in url or \"youtu.be\" in url: save_youtube_transcript(url)\n",
" else: save_text(website_webbase(url))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H3gtJjSfoK5C"
},
"outputs": [],
"source": [
"get_website_youtube_text_file(url_list)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gFNbFdEKDBuu"
},
"outputs": [],
"source": [
"### Embedding Creation ###\n",
"\n",
"# See https://github.com/hwchase17/langchain/discussions/3786\n",
"# for discussion of which splitter to use\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
"\n",
"all_document_segments = []\n",
"print(\"The following files have been uploaded:\")\n",
"for filename in os.listdir():\n",
" if filename not in [\".config\", \"sample_data\"]:\n",
" print(\"\\t\"+filename)\n",
" loader = UnstructuredFileLoader(filename)\n",
" documents = loader.load()\n",
" document_segments = text_splitter.split_documents(documents)\n",
" all_document_segments.extend(document_segments)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cBcOSf2rDBuv"
},
"source": [
"Make sure that all of your documents are shown in the output from the previous code cell, then continue execution."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HH8WMgWSDBuw"
},
"outputs": [],
"source": [
"model_name = 'text-embedding-ada-002'\n",
"model_embedding_dimension = 1536\n",
"\n",
"embeddings = OpenAIEmbeddings(\n",
" model=model_name\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HXJYOjYKDBuw"
},
"outputs": [],
"source": [
"### Dataset Creation ###\n",
"dataset_path = f\"hub://{DEEPLAKE_USERNAME}/{dataset_name}\"\n",
"db = DeepLake.from_documents(all_document_segments, dataset_path=dataset_path,\n",
" embedding=embeddings, public=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "01UMqQcHDBux"
},
"source": [
"### Sharing With Students"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "l3TMy84LDBux"
},
"outputs": [],
"source": [
"display(Markdown(f'''To let students access the repository, give them the following URL:\n",
"\n",
"`{dataset_path}`'''))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iUeTuV-WDBuy"
},
"source": [
"Distribute the URL above to students. They will copy and paste it into the LLM learning application, which then allows their models to use all of the documents you uploaded as reference sources when responding to or creating questions."
]
}
],
"metadata": {
"colab": {
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|