nbdev_refactor / ai_classroom_suite /PromptInteractionBase.py
Ilayda-j's picture
Upload 27 files
10de3c1
raw
history blame
10.3 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/prompt_interaction_base.ipynb.
# %% auto 0
__all__ = ['SYSTEM_TUTOR_TEMPLATE', 'HUMAN_RESPONSE_TEMPLATE', 'HUMAN_RETRIEVER_RESPONSE_TEMPLATE', 'DEFAULT_ASSESSMENT_MSG',
'DEFAULT_LEARNING_OBJS_MSG', 'DEFAULT_CONDENSE_PROMPT_TEMPLATE', 'DEFAULT_QUESTION_PROMPT_TEMPLATE',
'DEFAULT_COMBINE_PROMPT_TEMPLATE', 'create_model', 'set_openai_key', 'create_base_tutoring_prompt',
'get_tutoring_prompt', 'get_tutoring_answer', 'create_tutor_mdl_chain']
# %% ../nbs/prompt_interaction_base.ipynb 3
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain, ConversationalRetrievalChain, RetrievalQAWithSourcesChain
from langchain.chains.base import Chain
from getpass import getpass
import os
# %% ../nbs/prompt_interaction_base.ipynb 5
def create_model(openai_mdl='gpt-3.5-turbo-16k', temperature=0.1, **chatopenai_kwargs):
llm = ChatOpenAI(model_name = openai_mdl, temperature=temperature, **chatopenai_kwargs)
return llm
# %% ../nbs/prompt_interaction_base.ipynb 6
def set_openai_key():
openai_api_key = getpass()
os.environ["OPENAI_API_KEY"] = openai_api_key
return
# %% ../nbs/prompt_interaction_base.ipynb 10
# Create system prompt template
SYSTEM_TUTOR_TEMPLATE = ("You are a world-class tutor helping students to perform better on oral and written exams though interactive experiences. " +
"When assessing and evaluating students, you always ask one question at a time, and wait for the student's response before " +
"providing them with feedback. Asking one question at a time, waiting for the student's response, and then commenting " +
"on the strengths and weaknesses of their responses (when appropriate) is what makes you such a sought-after, world-class tutor.")
# Create a human response template
HUMAN_RESPONSE_TEMPLATE = ("I'm trying to better understand the text provided below. {assessment_request} The learning objectives to be assessed are: " +
"{learning_objectives}. Although I may request more than one assessment question, you should " +
"only provide ONE question in you initial response. Do not include the answer in your response. " +
"If I get an answer wrong, provide me with an explanation of why it was incorrect, and then give me additional " +
"chances to respond until I get the correct choice. Explain why the correct choice is right. " +
"The text that you will base your questions on is as follows: {context}.")
HUMAN_RETRIEVER_RESPONSE_TEMPLATE = ("I want to master the topics based on the excerpts of the text below. Given the following extracted text from long documents, {assessment_request} The learning objectives to be assessed are: " +
"{learning_objectives}. Although I may request more than one assessment question, you should " +
"only provide ONE question in you initial response. Do not include the answer in your response. " +
"If I get an answer wrong, provide me with an explanation of why it was incorrect, and then give me additional " +
"chances to respond until I get the correct choice. Explain why the correct choice is right. " +
"The extracted text from long documents are as follows: {summaries}.")
def create_base_tutoring_prompt(system_prompt=None, human_prompt=None):
#setup defaults using defined values
if system_prompt == None:
system_prompt = PromptTemplate(template = SYSTEM_TUTOR_TEMPLATE,
input_variables = [])
if human_prompt==None:
human_prompt = PromptTemplate(template = HUMAN_RESPONSE_TEMPLATE,
input_variables=['assessment_request', 'learning_objectives', 'context'])
# Create prompt messages
system_tutor_msg = SystemMessagePromptTemplate(prompt=system_prompt)
human_tutor_msg = HumanMessagePromptTemplate(prompt= human_prompt)
# Create ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_tutor_msg, human_tutor_msg])
return chat_prompt
# %% ../nbs/prompt_interaction_base.ipynb 14
DEFAULT_ASSESSMENT_MSG = 'Please design a 5 question short answer quiz about the provided text.'
DEFAULT_LEARNING_OBJS_MSG = 'Identify and comprehend the important topics and underlying messages and connections within the text'
def get_tutoring_prompt(context, chat_template=None, assessment_request = None, learning_objectives = None, **kwargs):
# set defaults
if chat_template is None:
chat_template = create_base_tutoring_prompt()
else:
if not all([prompt_var in chat_template.input_variables
for prompt_var in ['context', 'assessment_request', 'learning_objectives']]):
raise KeyError('''It looks like you may have a custom chat_template. Either include context, assessment_request, and learning objectives
as input variables or create your own tutoring prompt.''')
if assessment_request is None and 'assessment_request':
assessment_request = DEFAULT_ASSESSMENT_MSG
if learning_objectives is None:
learning_objectives = DEFAULT_LEARNING_OBJS_MSG
# compose final prompt
tutoring_prompt = chat_template.format_prompt(context=context,
assessment_request = assessment_request,
learning_objectives = learning_objectives,
**kwargs)
return tutoring_prompt
# %% ../nbs/prompt_interaction_base.ipynb 18
def get_tutoring_answer(context, tutor_mdl, chat_template=None, assessment_request=None, learning_objectives=None, return_dict=False, call_kwargs={}, input_kwargs={}):
# Get answer from chat
# set defaults
if assessment_request is None:
assessment_request = DEFAULT_ASSESSMENT_MSG
if learning_objectives is None:
learning_objectives = DEFAULT_LEARNING_OBJS_MSG
common_inputs = {'assessment_request':assessment_request, 'learning_objectives':learning_objectives}
# get answer based on interaction type
if isinstance(tutor_mdl, ChatOpenAI):
human_ask_prompt = get_tutoring_prompt(context, chat_template, assessment_request, learning_objectives)
tutor_answer = tutor_mdl(human_ask_prompt.to_messages())
if not return_dict:
final_answer = tutor_answer.content
elif isinstance(tutor_mdl, Chain):
if isinstance(tutor_mdl, RetrievalQAWithSourcesChain):
if 'question' not in input_kwargs.keys():
common_inputs['question'] = assessment_request
final_inputs = {**common_inputs, **input_kwargs}
else:
common_inputs['context'] = context
final_inputs = {**common_inputs, **input_kwargs}
# get answer
tutor_answer = tutor_mdl(final_inputs, **call_kwargs)
final_answer = tutor_answer
if not return_dict:
final_answer = final_answer['answer']
else:
raise NotImplementedError(f"tutor_mdl of type {type(tutor_mdl)} is not supported.")
return final_answer
# %% ../nbs/prompt_interaction_base.ipynb 19
DEFAULT_CONDENSE_PROMPT_TEMPLATE = ("Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, " +
"in its original language.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:")
DEFAULT_QUESTION_PROMPT_TEMPLATE = ("Use the following portion of a long document to see if any of the text is relevant to creating a response to the question." +
"\nReturn any relevant text verbatim.\n{context}\nQuestion: {question}\nRelevant text, if any:")
DEFAULT_COMBINE_PROMPT_TEMPLATE = ("Given the following extracted parts of a long document and the given prompt, create a final answer with references ('SOURCES'). "+
"If you don't have a response, just say that you are unable to come up with a response. "+
"\nSOURCES:\n\nQUESTION: {question}\n=========\n{summaries}\n=========\nFINAL ANSWER:'")
def create_tutor_mdl_chain(kind='llm', mdl=None, prompt_template = None, **kwargs):
#Validate parameters
if mdl is None:
mdl = create_model()
kind = kind.lower()
#Create model chain
if kind == 'llm':
if prompt_template is None:
prompt_template = create_base_tutoring_prompt()
mdl_chain = LLMChain(llm=mdl, prompt=prompt_template, **kwargs)
elif kind == 'conversational':
if prompt_template is None:
prompt_template = PromptTemplate.from_template(DEFAULT_CONDENSE_PROMPT_TEMPLATE)
mdl_chain = ConversationalRetrieverChain.from_llm(mdl, condense_question_prompt = prompt_template, **kwargs)
elif kind == 'retrieval_qa':
if prompt_template is None:
#Create custom human prompt to take in summaries
human_prompt = PromptTemplate(template = HUMAN_RETRIEVER_RESPONSE_TEMPLATE,
input_variables=['assessment_request', 'learning_objectives', 'summaries'])
prompt_template = create_base_tutoring_prompt(human_prompt=human_prompt)
#Create the combination prompt and model
question_template = PromptTemplate.from_template(DEFAULT_QUESTION_PROMPT_TEMPLATE)
mdl_chain = RetrievalQAWithSourcesChain.from_llm(llm=mdl, question_prompt=question_template, combine_prompt = prompt_template, **kwargs)
else:
raise NotImplementedError(f"Model kind {kind} not implemented")
return mdl_chain