Spaces:
Sleeping
Sleeping
File size: 1,213 Bytes
b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
Data:
# Basics
log_dir: 'tasks/models'
# Data
dataset: "FFTDataset"
data_dir: None
model_name: "CNNEncoder"
batch_size: 32
num_epochs: 10
exp_num: 2
max_len_spectra: 4096
max_days_lc: 270
lc_freq: 0.0208
create_umap: True
checkpoint_path: 'tasks/models/frugal_2025-01-21/frugal_kan_2.pth'
CNNEncoder:
# Model
in_channels: 2
num_layers: 4
stride: 1
encoder_dims: [32,64,128]
kernel_size: 3
dropout_p: 0.3
output_dim: 2
beta: 1
load_checkpoint: False
checkpoint_num: 1
activation: "silu"
sine_w0: 1.0
avg_output: False
KAN:
layers_hidden: [1125,32,8,8,1]
grid_min: -1.2
grid_max: 1.2
num_grids: 8
exponent: 2
CNNEncoder_f:
# Model
in_channels: 1
num_layers: 4
stride: 1
encoder_dims: [32,64,128]
kernel_size: 3
dropout_p: 0.3
output_dim: 2
beta: 1
load_checkpoint: True
checkpoint_num: 1
activation: "silu"
sine_w0: 1.0
avg_output: True
Conformer:
encoder: ["mhsa_pro", "conv"]
timeshift: false
num_layers: 4
encoder_dim: 128
num_heads: 8
kernel_size: 3
dropout_p: 0.2
norm: "postnorm"
Optimization:
# Optimization
max_lr: 1e-5
weight_decay: 5e-6
warmup_pct: 0.3
steps_per_epoch: 3500 |