File size: 12,795 Bytes
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
 
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
 
b3fb4dd
 
 
 
 
 
 
 
49ebc1f
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
b3fb4dd
 
49ebc1f
 
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
707b3a3
 
b3fb4dd
 
 
 
49ebc1f
b3fb4dd
 
49ebc1f
b3fb4dd
 
 
 
49ebc1f
 
b3fb4dd
 
707b3a3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
from torch.cuda.amp import autocast
import numpy as np
import time
import os
import yaml
from matplotlib import pyplot as plt
import glob
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed as dist

class Trainer(object):
    """
    A class that encapsulates the training loop for a PyTorch model.
    """
    def __init__(self, model, optimizer, criterion, train_dataloader, device, world_size=1, output_dim=2,
                 scheduler=None, val_dataloader=None,   max_iter=np.inf, scaler=None,
                  grad_clip=False, exp_num=None, log_path=None, exp_name=None, plot_every=None,
                   cos_inc=False, range_update=None, accumulation_step=1, wandb_log=False, num_quantiles=1,
                   update_func=lambda x: x):
        self.model = model
        self.optimizer = optimizer
        self.criterion = criterion
        self.scaler = scaler
        self.grad_clip = grad_clip
        self.cos_inc = cos_inc
        self.output_dim = output_dim
        self.scheduler = scheduler
        self.train_dl = train_dataloader
        self.val_dl = val_dataloader
        self.train_sampler = self.get_sampler_from_dataloader(train_dataloader)
        self.val_sampler = self.get_sampler_from_dataloader(val_dataloader)
        self.max_iter = max_iter
        self.device = device
        self.world_size = world_size
        self.exp_num = exp_num
        self.exp_name = exp_name
        self.log_path = log_path
        self.best_state_dict = None
        self.plot_every = plot_every
        self.logger = None
        self.range_update = range_update
        self.accumulation_step = accumulation_step
        self.wandb = wandb_log
        self.num_quantiles = num_quantiles
        self.update_func = update_func
        # if log_path is not None:
        #     self.logger =SummaryWriter(f'{self.log_path}/exp{self.exp_num}')
        #     # print(f"logger path: {self.log_path}/exp{self.exp_num}")

        # print("logger is: ", self.logger)
    
    def get_sampler_from_dataloader(self, dataloader):
        if hasattr(dataloader, 'sampler'):
            if isinstance(dataloader.sampler, torch.utils.data.DistributedSampler):
                return dataloader.sampler
            elif hasattr(dataloader.sampler, 'sampler'):
                return dataloader.sampler.sampler
        
        if hasattr(dataloader, 'batch_sampler') and hasattr(dataloader.batch_sampler, 'sampler'):
            return dataloader.batch_sampler.sampler
        
        return None

    def fit(self, num_epochs, device,  early_stopping=None, only_p=False, best='loss', conf=False):
        """
        Fits the model for the given number of epochs.
        """
        min_loss = np.inf
        best_acc = 0
        train_loss, val_loss,  = [], []
        train_acc, val_acc = [], []
        lrs = []
        # self.optim_params['lr_history'] = []
        epochs_without_improvement = 0
        # main_proccess = (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) or self.device == 'cpu'
        main_proccess = True    # change in a ddp setting
        print(f"Starting training for {num_epochs} epochs")
        print("is main process: ", main_proccess, flush=True)
        global_time = time.time()
        self.epoch = 0
        for epoch in range(num_epochs):
            self.epoch = epoch
            start_time = time.time()
            plot = (self.plot_every is not None) and (epoch % self.plot_every == 0)
            t_loss, t_acc = self.train_epoch(device, epoch=epoch)
            t_loss_mean = np.nanmean(t_loss)
            train_loss.extend(t_loss)
            global_train_accuracy, global_train_loss = self.process_loss(t_acc, t_loss_mean)
            if main_proccess:  # Only perform this on the master GPU
                train_acc.append(global_train_accuracy.mean().item())
                
            v_loss, v_acc = self.eval_epoch(device, epoch=epoch)
            v_loss_mean = np.nanmean(v_loss)
            val_loss.extend(v_loss)
            global_val_accuracy, global_val_loss = self.process_loss(v_acc, v_loss_mean)
            if main_proccess:  # Only perform this on the master GPU                
                val_acc.append(global_val_accuracy.mean().item())
                
                current_objective = global_val_loss if best == 'loss' else global_val_accuracy.mean()
                improved = False
                
                if best == 'loss':
                    if current_objective < min_loss:
                        min_loss = current_objective
                        improved = True
                else:
                    if current_objective > best_acc:
                        best_acc = current_objective
                        improved = True
                
                if improved:
                    model_name = f'{self.log_path}/{self.exp_num}/{self.exp_name}.pth'
                    print(f"saving model at {model_name}...")
                    torch.save(self.model.state_dict(), model_name)
                    self.best_state_dict = self.model.state_dict()
                    epochs_without_improvement = 0
                else:
                    epochs_without_improvement += 1

                current_lr = self.optimizer.param_groups[0]['lr'] if self.scheduler is None \
                            else self.scheduler.get_last_lr()[0]
                
                lrs.append(current_lr)

                print(f'Epoch {epoch}, lr {current_lr}, Train Loss: {global_train_loss:.6f}, Val Loss:'\
                f'{global_val_loss:.6f}, Train Acc: {global_train_accuracy.round(decimals=4).tolist()}, '\
                f'Val Acc: {global_val_accuracy.round(decimals=4).tolist()},'\
                  f'Time: {time.time() - start_time:.2f}s, Total Time: {(time.time() - global_time)/3600} hr', flush=True)
                if epoch % 10 == 0:
                    print(os.system('nvidia-smi'))

                if epochs_without_improvement == early_stopping:
                    print('early stopping!', flush=True)
                    break
                if time.time() - global_time > (23.83 * 3600):
                    print("time limit reached")
                    break 

        return {"num_epochs":num_epochs, "train_loss": train_loss,
                 "val_loss": val_loss, "train_acc": train_acc, "val_acc": val_acc, "lrs": lrs}

    def process_loss(self, acc, loss_mean):
        if  torch.cuda.is_available() and torch.distributed.is_initialized():
            global_accuracy = torch.tensor(acc).cuda()  # Convert accuracy to a tensor on the GPU
            torch.distributed.reduce(global_accuracy, dst=0, op=torch.distributed.ReduceOp.SUM)
            global_loss = torch.tensor(loss_mean).cuda()  # Convert loss to a tensor on the GPU
            torch.distributed.reduce(global_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
            
            # Divide both loss and accuracy by world size
            world_size = torch.distributed.get_world_size()
            global_loss /= world_size
            global_accuracy /= world_size
        else:
            global_loss = torch.tensor(loss_mean)
            global_accuracy = torch.tensor(acc)
        return global_accuracy, global_loss

    def load_best_model(self, to_ddp=True, from_ddp=True):
        data_dir = f'{self.log_path}/exp{self.exp_num}'
        # data_dir = f'{self.log_path}/exp29' # for debugging

        state_dict_files = glob.glob(data_dir + '/*.pth')
        print("loading model from ", state_dict_files[-1])
        
        state_dict = torch.load(state_dict_files[-1]) if to_ddp else torch.load(state_dict_files[0],map_location=self.device)
    
        if from_ddp:
            print("loading distributed model")
            # Remove "module." from keys
            new_state_dict = OrderedDict()
            for key, value in state_dict.items():
                if key.startswith('module.'):
                    while key.startswith('module.'):
                        key = key[7:]
                new_state_dict[key] = value
            state_dict = new_state_dict
        # print("state_dict: ", state_dict.keys())
        # print("model: ", self.model.state_dict().keys())

        self.model.load_state_dict(state_dict, strict=False)

    def check_gradients(self):
        for name, param in self.model.named_parameters():
            if param.grad is not None:
                grad_norm = param.grad.norm().item()
                if grad_norm > 10:
                    print(f"Large gradient in {name}: {grad_norm}")

    def train_epoch(self, device, epoch):
        """
        Trains the model for one epoch.
        """
        if self.train_sampler is not None:
            try:
                self.train_sampler.set_epoch(epoch)
            except AttributeError:
                pass
        self.model.train()
        train_loss = []
        train_acc = 0
        total = 0
        all_accs = torch.zeros(self.output_dim, device=device)
        pbar = tqdm(self.train_dl)
        for i, batch in enumerate(pbar):
            if self.optimizer is not None:
                self.optimizer.zero_grad()
            loss, acc , y = self.train_batch(batch, i, device)
            train_loss.append(loss.item())
            all_accs = all_accs + acc
            total += len(y)
            pbar.set_description(f"train_acc: {acc}, train_loss:  {loss.item()}")      
            if i > self.max_iter:
                break
        print("number of train_accs: ", train_acc)
        return train_loss, all_accs/total
    
    def train_batch(self, batch, batch_idx, device):
        x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
        x = x.to(device).float()
        fft = fft.to(device).float()
        y = y.to(device).float()
        x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
        y_pred = self.model(x_fft).squeeze()
        loss = self.criterion(y_pred, y)
        loss.backward()
        self.optimizer.step()
        if self.scheduler is not None:
            self.scheduler.step()
        # get predicted classes
        probs = torch.sigmoid(y_pred)
        cls_pred = (probs > 0.5).float()
        acc = (cls_pred == y).sum()
        return loss, acc, y

    def eval_epoch(self, device, epoch):
        """
        Evaluates the model for one epoch.
        """
        self.model.eval()
        val_loss = []
        val_acc = 0
        total = 0
        all_accs = torch.zeros(self.output_dim, device=device)
        pbar = tqdm(self.val_dl)
        for i,batch in enumerate(pbar):
            loss, acc, y = self.eval_batch(batch, i, device)
            val_loss.append(loss.item())
            all_accs = all_accs + acc
            total += len(y)
            pbar.set_description(f"val_acc: {acc}, val_loss:  {loss.item()}")
            if i > self.max_iter:
                break
        return val_loss, all_accs/total

    def eval_batch(self, batch, batch_idx, device):
        x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
        x = x.to(device).float()
        fft = fft.to(device).float()
        x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
        y = y.to(device).float()
        with torch.no_grad():
            y_pred = self.model(x_fft).squeeze()
        loss = self.criterion(y_pred.squeeze(), y)
        probs = torch.sigmoid(y_pred)
        cls_pred = (probs > 0.5).float()
        acc = (cls_pred == y).sum()
        return loss, acc, y

    def predict(self, test_dataloader, device):
        """
        Returns the predictions of the model on the given dataset.
        """
        self.model.eval()
        total = 0
        all_accs = 0
        predictions = []
        true_labels = []
        pbar = tqdm(test_dataloader)
        for i,batch in enumerate(pbar):
            x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
            x = x.to(device).float()
            fft = fft.to(device).float()
            x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
            y = y.to(device).float()
            with torch.no_grad():
                y_pred = self.model(x_fft).squeeze()
            loss = self.criterion(y_pred, y)
            probs = torch.sigmoid(y_pred)
            cls_pred = (probs > 0.5).float()
            acc = (cls_pred == y).sum()
            predictions.extend(cls_pred.cpu().numpy())
            true_labels.extend(y.cpu().numpy())
            all_accs += acc
            total += len(y)
            pbar.set_description("acc: {:.4f}".format(acc))
            if i > self.max_iter:
                break
        return predictions, true_labels, all_accs/total