Spaces:
Sleeping
Sleeping
File size: 12,795 Bytes
b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 707b3a3 b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 707b3a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch
from torch.cuda.amp import autocast
import numpy as np
import time
import os
import yaml
from matplotlib import pyplot as plt
import glob
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed as dist
class Trainer(object):
"""
A class that encapsulates the training loop for a PyTorch model.
"""
def __init__(self, model, optimizer, criterion, train_dataloader, device, world_size=1, output_dim=2,
scheduler=None, val_dataloader=None, max_iter=np.inf, scaler=None,
grad_clip=False, exp_num=None, log_path=None, exp_name=None, plot_every=None,
cos_inc=False, range_update=None, accumulation_step=1, wandb_log=False, num_quantiles=1,
update_func=lambda x: x):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.scaler = scaler
self.grad_clip = grad_clip
self.cos_inc = cos_inc
self.output_dim = output_dim
self.scheduler = scheduler
self.train_dl = train_dataloader
self.val_dl = val_dataloader
self.train_sampler = self.get_sampler_from_dataloader(train_dataloader)
self.val_sampler = self.get_sampler_from_dataloader(val_dataloader)
self.max_iter = max_iter
self.device = device
self.world_size = world_size
self.exp_num = exp_num
self.exp_name = exp_name
self.log_path = log_path
self.best_state_dict = None
self.plot_every = plot_every
self.logger = None
self.range_update = range_update
self.accumulation_step = accumulation_step
self.wandb = wandb_log
self.num_quantiles = num_quantiles
self.update_func = update_func
# if log_path is not None:
# self.logger =SummaryWriter(f'{self.log_path}/exp{self.exp_num}')
# # print(f"logger path: {self.log_path}/exp{self.exp_num}")
# print("logger is: ", self.logger)
def get_sampler_from_dataloader(self, dataloader):
if hasattr(dataloader, 'sampler'):
if isinstance(dataloader.sampler, torch.utils.data.DistributedSampler):
return dataloader.sampler
elif hasattr(dataloader.sampler, 'sampler'):
return dataloader.sampler.sampler
if hasattr(dataloader, 'batch_sampler') and hasattr(dataloader.batch_sampler, 'sampler'):
return dataloader.batch_sampler.sampler
return None
def fit(self, num_epochs, device, early_stopping=None, only_p=False, best='loss', conf=False):
"""
Fits the model for the given number of epochs.
"""
min_loss = np.inf
best_acc = 0
train_loss, val_loss, = [], []
train_acc, val_acc = [], []
lrs = []
# self.optim_params['lr_history'] = []
epochs_without_improvement = 0
# main_proccess = (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) or self.device == 'cpu'
main_proccess = True # change in a ddp setting
print(f"Starting training for {num_epochs} epochs")
print("is main process: ", main_proccess, flush=True)
global_time = time.time()
self.epoch = 0
for epoch in range(num_epochs):
self.epoch = epoch
start_time = time.time()
plot = (self.plot_every is not None) and (epoch % self.plot_every == 0)
t_loss, t_acc = self.train_epoch(device, epoch=epoch)
t_loss_mean = np.nanmean(t_loss)
train_loss.extend(t_loss)
global_train_accuracy, global_train_loss = self.process_loss(t_acc, t_loss_mean)
if main_proccess: # Only perform this on the master GPU
train_acc.append(global_train_accuracy.mean().item())
v_loss, v_acc = self.eval_epoch(device, epoch=epoch)
v_loss_mean = np.nanmean(v_loss)
val_loss.extend(v_loss)
global_val_accuracy, global_val_loss = self.process_loss(v_acc, v_loss_mean)
if main_proccess: # Only perform this on the master GPU
val_acc.append(global_val_accuracy.mean().item())
current_objective = global_val_loss if best == 'loss' else global_val_accuracy.mean()
improved = False
if best == 'loss':
if current_objective < min_loss:
min_loss = current_objective
improved = True
else:
if current_objective > best_acc:
best_acc = current_objective
improved = True
if improved:
model_name = f'{self.log_path}/{self.exp_num}/{self.exp_name}.pth'
print(f"saving model at {model_name}...")
torch.save(self.model.state_dict(), model_name)
self.best_state_dict = self.model.state_dict()
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
current_lr = self.optimizer.param_groups[0]['lr'] if self.scheduler is None \
else self.scheduler.get_last_lr()[0]
lrs.append(current_lr)
print(f'Epoch {epoch}, lr {current_lr}, Train Loss: {global_train_loss:.6f}, Val Loss:'\
f'{global_val_loss:.6f}, Train Acc: {global_train_accuracy.round(decimals=4).tolist()}, '\
f'Val Acc: {global_val_accuracy.round(decimals=4).tolist()},'\
f'Time: {time.time() - start_time:.2f}s, Total Time: {(time.time() - global_time)/3600} hr', flush=True)
if epoch % 10 == 0:
print(os.system('nvidia-smi'))
if epochs_without_improvement == early_stopping:
print('early stopping!', flush=True)
break
if time.time() - global_time > (23.83 * 3600):
print("time limit reached")
break
return {"num_epochs":num_epochs, "train_loss": train_loss,
"val_loss": val_loss, "train_acc": train_acc, "val_acc": val_acc, "lrs": lrs}
def process_loss(self, acc, loss_mean):
if torch.cuda.is_available() and torch.distributed.is_initialized():
global_accuracy = torch.tensor(acc).cuda() # Convert accuracy to a tensor on the GPU
torch.distributed.reduce(global_accuracy, dst=0, op=torch.distributed.ReduceOp.SUM)
global_loss = torch.tensor(loss_mean).cuda() # Convert loss to a tensor on the GPU
torch.distributed.reduce(global_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
# Divide both loss and accuracy by world size
world_size = torch.distributed.get_world_size()
global_loss /= world_size
global_accuracy /= world_size
else:
global_loss = torch.tensor(loss_mean)
global_accuracy = torch.tensor(acc)
return global_accuracy, global_loss
def load_best_model(self, to_ddp=True, from_ddp=True):
data_dir = f'{self.log_path}/exp{self.exp_num}'
# data_dir = f'{self.log_path}/exp29' # for debugging
state_dict_files = glob.glob(data_dir + '/*.pth')
print("loading model from ", state_dict_files[-1])
state_dict = torch.load(state_dict_files[-1]) if to_ddp else torch.load(state_dict_files[0],map_location=self.device)
if from_ddp:
print("loading distributed model")
# Remove "module." from keys
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.'):
while key.startswith('module.'):
key = key[7:]
new_state_dict[key] = value
state_dict = new_state_dict
# print("state_dict: ", state_dict.keys())
# print("model: ", self.model.state_dict().keys())
self.model.load_state_dict(state_dict, strict=False)
def check_gradients(self):
for name, param in self.model.named_parameters():
if param.grad is not None:
grad_norm = param.grad.norm().item()
if grad_norm > 10:
print(f"Large gradient in {name}: {grad_norm}")
def train_epoch(self, device, epoch):
"""
Trains the model for one epoch.
"""
if self.train_sampler is not None:
try:
self.train_sampler.set_epoch(epoch)
except AttributeError:
pass
self.model.train()
train_loss = []
train_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.train_dl)
for i, batch in enumerate(pbar):
if self.optimizer is not None:
self.optimizer.zero_grad()
loss, acc , y = self.train_batch(batch, i, device)
train_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"train_acc: {acc}, train_loss: {loss.item()}")
if i > self.max_iter:
break
print("number of train_accs: ", train_acc)
return train_loss, all_accs/total
def train_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
y = y.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
loss.backward()
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step()
# get predicted classes
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def eval_epoch(self, device, epoch):
"""
Evaluates the model for one epoch.
"""
self.model.eval()
val_loss = []
val_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.val_dl)
for i,batch in enumerate(pbar):
loss, acc, y = self.eval_batch(batch, i, device)
val_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"val_acc: {acc}, val_loss: {loss.item()}")
if i > self.max_iter:
break
return val_loss, all_accs/total
def eval_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred.squeeze(), y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def predict(self, test_dataloader, device):
"""
Returns the predictions of the model on the given dataset.
"""
self.model.eval()
total = 0
all_accs = 0
predictions = []
true_labels = []
pbar = tqdm(test_dataloader)
for i,batch in enumerate(pbar):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
predictions.extend(cls_pred.cpu().numpy())
true_labels.extend(y.cpu().numpy())
all_accs += acc
total += len(y)
pbar.set_description("acc: {:.4f}".format(acc))
if i > self.max_iter:
break
return predictions, true_labels, all_accs/total |