Spaces:
Sleeping
Sleeping
File size: 26,193 Bytes
b3fb4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import torch.nn.init as init
import math
from .mhsa_pro import MHA_rotary, MHA_decoder
from .cnn import ConvBlock, ConvBlockDecoder
from typing import Optional,Tuple
class ResidualConnectionModule(nn.Module):
"""
Residual Connection Module.
outputs = (module(inputs) x module_factor + inputs x input_factor)
"""
def __init__(self, module: nn.Module, dims, args):
super(ResidualConnectionModule, self).__init__()
self.module = module
self.module_factor = 1
self.input_factor = 1
def forward(self, inputs: Tensor, **kwargs) -> Tensor:
return (self.module(inputs, **kwargs) * self.module_factor) + (inputs * self.input_factor)
class PostNorm(nn.Module):
"""
Residual Connection Module.
outputs = (module(inputs) x module_factor + inputs x input_factor)
"""
def __init__(self, module: nn.Module, dims, args):
super(PostNorm, self).__init__()
self.module = module
input_factor = torch.FloatTensor(args.alpha) if getattr(args, 'alpha', None) else torch.tensor(1.)
self.register_buffer('input_factor', input_factor)
self.norm = nn.LayerNorm(dims)
def forward(self, inputs: Tensor, **kwargs) -> Tensor:
return self.norm(self.module(inputs, **kwargs) + (inputs * self.input_factor))
class Linear(nn.Module):
"""
Wrapper class of torch.nn.Linear
Weight initialize by xavier initialization and bias initialize to zeros.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias=bias)
init.xavier_uniform_(self.linear.weight)
if bias:
init.zeros_(self.linear.bias)
def forward(self, x: Tensor) -> Tensor:
return self.linear(x)
class View(nn.Module):
""" Wrapper class of torch.view() for Sequential module. """
def __init__(self, shape: tuple, contiguous: bool = False):
super(View, self).__init__()
self.shape = shape
self.contiguous = contiguous
def forward(self, x: Tensor) -> Tensor:
if self.contiguous:
x = x.contiguous()
return x.view(*self.shape)
class Transpose(nn.Module):
""" Wrapper class of torch.transpose() for Sequential module. """
def __init__(self, shape: tuple):
super(Transpose, self).__init__()
self.shape = shape
def forward(self, x: Tensor) -> Tensor:
return x.transpose(*self.shape)
class FeedForwardModule(nn.Module):
"""
Conformer Feed Forward Module follow pre-norm residual units and apply layer normalization within the residual unit
and on the input before the first linear layer. This module also apply Swish activation and dropout, which helps
regularizing the network.
Args:
encoder_dim (int): Dimension of conformer encoder
expansion_factor (int): Expansion factor of feed forward module.
dropout_p (float): Ratio of dropout
device (torch.device): torch device (cuda or cpu)
Inputs: inputs
- **inputs** (batch, time, dim): Tensor contains input sequences
Outputs: outputs
- **outputs** (batch, time, dim): Tensor produces by feed forward module.
"""
def __init__(
self,
args,
) -> None:
super(FeedForwardModule, self).__init__()
expansion_factor = 4
self.sequential = nn.Sequential(
nn.LayerNorm(args.encoder_dim),
Linear(args.encoder_dim, args.encoder_dim * expansion_factor, bias=True),
nn.SiLU(),
nn.Dropout(p=args.dropout_p),
Linear(args.encoder_dim * expansion_factor, args.encoder_dim, bias=True),
nn.Dropout(p=args.dropout_p),
)
def forward(self, inputs: Tensor) -> Tensor:
return self.sequential(inputs)
class DepthwiseConv1d(nn.Module):
"""
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer,
this operation is termed in literature as depthwise convolution.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by depthwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
bias: bool = False,
) -> None:
super(DepthwiseConv1d, self).__init__()
assert out_channels % in_channels == 0, "out_channels should be constant multiple of in_channels"
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=in_channels,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, inputs: Tensor) -> Tensor:
return self.conv(inputs)
class PointwiseConv1d(nn.Module):
"""
When kernel size == 1 conv1d, this operation is termed in literature as pointwise convolution.
This operation often used to match dimensions.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by pointwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
padding: int = 0,
bias: bool = True,
) -> None:
super(PointwiseConv1d, self).__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, inputs: Tensor) -> Tensor:
return self.conv(inputs)
class ConformerConvModule(nn.Module):
"""
Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU).
This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
to aid training deep models.
Args:
in_channels (int): Number of channels in the input
kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31
dropout_p (float, optional): probability of dropout
Inputs: inputs
inputs (batch, time, dim): Tensor contains input sequences
Outputs: outputs
outputs (batch, time, dim): Tensor produces by conformer convolution module.
"""
def __init__(
self,
args,
) -> None:
super(ConformerConvModule, self).__init__()
assert (args.kernel_size - 1) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
expansion_factor = 2
dropout_p = 0.1
self.sequential = nn.Sequential(
nn.LayerNorm(args.encoder_dim),
Transpose(shape=(1, 2)),
PointwiseConv1d(args.encoder_dim, args.encoder_dim * expansion_factor, stride=1, padding=0, bias=True),
nn.GLU(dim=1),
DepthwiseConv1d(args.encoder_dim, args.encoder_dim, args.kernel_size, stride=1, padding=(args.kernel_size - 1) // 2),
nn.BatchNorm1d(args.encoder_dim),
nn.SiLU(),
PointwiseConv1d(args.encoder_dim, args.encoder_dim, stride=1, padding=0, bias=True),
nn.Dropout(p=dropout_p),
)
def forward(self, inputs: Tensor) -> Tensor:
return self.sequential(inputs).transpose(1, 2)
class PositionalEncoding(nn.Module):
"""
Positional Encoding proposed in "Attention Is All You Need".
Since transformer contains no recurrence and no convolution, in order for the model to make
use of the order of the sequence, we must add some positional information.
"Attention Is All You Need" use sine and cosine functions of different frequencies:
PE_(pos, 2i) = sin(pos / power(10000, 2i / d_model))
PE_(pos, 2i+1) = cos(pos / power(10000, 2i / d_model))
"""
def __init__(self, d_model: int = 128, max_len: int = 10000) -> None:
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model, requires_grad=False)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, length: int) -> Tensor:
return self.pe[:, :length]
class RelativeMultiHeadAttention(nn.Module):
"""
Multi-head attention with relative positional encoding.
This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
dropout_p (float): probability of dropout
Inputs: query, key, value, pos_embedding, mask
- **query** (batch, time, dim): Tensor containing query vector
- **key** (batch, time, dim): Tensor containing key vector
- **value** (batch, time, dim): Tensor containing value vector
- **pos_embedding** (batch, time, dim): Positional embedding tensor
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs**: Tensor produces by relative multi head attention module.
"""
def __init__(
self,
encoder_dim: int = 128,
num_heads: int = 8,
dropout_p: float = 0.1
):
super(RelativeMultiHeadAttention, self).__init__()
assert encoder_dim % num_heads == 0, "d_model % num_heads should be zero."
self.d_model = encoder_dim
self.d_head = int(encoder_dim / num_heads)
self.num_heads = num_heads
self.sqrt_dim = math.sqrt(encoder_dim)
self.query_proj = Linear(encoder_dim, encoder_dim)
self.key_proj = Linear(encoder_dim, encoder_dim)
self.value_proj = Linear(encoder_dim, encoder_dim)
self.pos_proj = Linear(encoder_dim, encoder_dim, bias=False)
self.dropout = nn.Dropout(p=dropout_p)
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
torch.nn.init.xavier_uniform_(self.u_bias)
torch.nn.init.xavier_uniform_(self.v_bias)
self.out_proj = Linear(encoder_dim, encoder_dim)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
pos_embedding: Tensor,
mask: Optional[Tensor] = None,
) -> Tensor:
batch_size = value.size(0)
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
query = query.view(batch_size, -1, self.num_heads, self.d_head)
key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
content_score = torch.matmul((query + self.u_bias).transpose(1, 2), key.transpose(2, 3))
pos_score = torch.matmul((query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
# content_score = torch.matmul((query).transpose(1, 2), key.transpose(2, 3))
# pos_score = torch.matmul((query).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
#Q(B,numheads,length,d_head)*PE(B,numheads,d_heads,length) = posscore(B,num_heads,length,length)
pos_score = self._relative_shift(pos_score)
score = (content_score + pos_score) / self.sqrt_dim
if mask is not None:
mask = mask.unsqueeze(1)
score.masked_fill_(mask, -1e9)
score = F.softmax(score, -1)
attn = self.dropout(score)
context = torch.matmul(attn, value).transpose(1, 2)
context = context.contiguous().view(batch_size, -1, self.d_model)
return self.out_proj(context)
def _relative_shift(self, pos_score: Tensor) -> Tensor:
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
#shift position score a unit along length axis and leave a blank row.
return pos_score
class MultiHeadedSelfAttentionModule(nn.Module):
"""
Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL,
the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention
module to generalize better on different input length and the resulting encoder is more robust to the variance of
the utterance length. Conformer use prenorm residual units with dropout which helps training
and regularizing deeper models.
Args:
d_model (int): The dimension of model
num_heads (int): The number of attention heads.
dropout_p (float): probability of dropout
device (torch.device): torch device (cuda or cpu)
Inputs: inputs, mask
- **inputs** (batch, time, dim): Tensor containing input vector
- **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
Returns:
- **outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module.
"""
def __init__(self, args):
super(MultiHeadedSelfAttentionModule, self).__init__()
dropout_p = 0.1
self.positional_encoding = PositionalEncoding(args.encoder_dim)
self.layer_norm = nn.LayerNorm(args.encoder_dim)
self.attention = RelativeMultiHeadAttention(args.encoder_dim, args.num_heads, args.dropout_p)
self.dropout = nn.Dropout(p=dropout_p)
def forward(self, inputs: Tensor, mask: Optional[Tensor] = None):
batch_size, seq_length, _ = inputs.size()
pos_embedding = self.positional_encoding(seq_length)
pos_embedding = pos_embedding.repeat(batch_size, 1, 1)
inputs = self.layer_norm(inputs)
outputs = self.attention(inputs, inputs, inputs, pos_embedding=pos_embedding, mask=mask)
return self.dropout(outputs)
class ConformerBlock(nn.Module):
"""
Conformer block contains two Feed Forward modules sandwiching the Multi-Headed Self-Attention module
and the Convolution module. This sandwich structure is inspired by Macaron-Net, which proposes replacing
the original feed-forward layer in the Transformer block into two half-step feed-forward layers,
one before the attention layer and one after.
Args:
encoder_dim (int, optional): Dimension of conformer encoder
num_attention_heads (int, optional): Number of attention heads
feed_forward_expansion_factor (int, optional): Expansion factor of feed forward module
conv_expansion_factor (int, optional): Expansion factor of conformer convolution module
feed_forward_dropout_p (float, optional): Probability of feed forward module dropout
attention_dropout_p (float, optional): Probability of attention module dropout
conv_dropout_p (float, optional): Probability of conformer convolution module dropout
conv_kernel_size (int or tuple, optional): Size of the convolving kernel
half_step_residual (bool): Flag indication whether to use half step residual or not
device (torch.device): torch device (cuda or cpu)
Inputs: inputs
- **inputs** (batch, time, dim): Tensor containing input vector
Returns: outputs
- **outputs** (batch, time, dim): Tensor produces by conformer block.
"""
def __init__(
self,
args
):
super(ConformerBlock, self).__init__()
norm_dict = {
'shortcut': ResidualConnectionModule,
'postnorm': PostNorm
}
block_dict = {
'ffn': FeedForwardModule,
'mhsa': MultiHeadedSelfAttentionModule,
'mhsa_pro': MHA_rotary,
'conv': ConvBlock,
'conformerconv': ConformerConvModule
}
self.modlist = nn.ModuleList([norm_dict[args.norm](block_dict[block](args), args.encoder_dim, args) for block in args.encoder]\
)
def forward(self, x: Tensor, RoPE, key_padding_mask=None) -> Tensor:
for m in self.modlist:
if isinstance(m.module, MHA_rotary):
x = m(x, RoPE=RoPE, key_padding_mask=key_padding_mask)
else:
x = m(x)
return x
class DecoderBlock(nn.Module):
"""
Decoder block contains two Feed Forward modules sandwiching the Multi-Headed Self-Attention module
and the Convolution module. This sandwich structure is inspired by Macaron-Net, which proposes replacing
the original feed-forward layer in the Transformer block into two half-step feed-forward layers,
one before the attention layer and one after.
Args:
encoder_dim (int, optional): Dimension of conformer encoder
num_attention_heads (int, optional): Number of attention heads
feed_forward_expansion_factor (int, optional): Expansion factor of feed forward module
conv_expansion_factor (int, optional): Expansion factor of conformer convolution module
feed_forward_dropout_p (float, optional): Probability of feed forward module dropout
attention_dropout_p (float, optional): Probability of attention module dropout
conv_dropout_p (float, optional): Probability of conformer convolution module dropout
conv_kernel_size (int or tuple, optional): Size of the convolving kernel
half_step_residual (bool): Flag indication whether to use half step residual or not
device (torch.device): torch device (cuda or cpu)
Inputs: inputs
- **inputs** (batch, time, dim): Tensor containing input vector
Returns: outputs
- **outputs** (batch, time, dim): Tensor produces by conformer block.
"""
def __init__(
self,
args
):
super(DecoderBlock, self).__init__()
norm_dict = {
'shortcut': ResidualConnectionModule,
'postnorm': PostNorm
}
block_dict = {
'ffn': FeedForwardModule,
'mhsa': MultiHeadedSelfAttentionModule,
'mhsa_pro': MHA_rotary,
'mhsa_decoder': MHA_decoder,
'conv': ConvBlockDecoder,
'conformerconv': ConformerConvModule
}
self.modlist = nn.ModuleList([norm_dict[args.norm](block_dict[block](args),args.decoder_dim, args) for block in args.decoder]\
)
def forward(self, x: Tensor, memory:Tensor, RoPE, key_padding_mask=None) -> Tensor:
for m in self.modlist:
if isinstance(m.module, MHA_decoder):
x = m(x, memory=memory, RoPE=RoPE, key_padding_mask=key_padding_mask)
elif isinstance(m.module, MHA_rotary):
x = m(x, RoPE=RoPE, key_padding_mask=key_padding_mask).transpose(0,1)
else:
x = m(x)
return x
class ConformerEncoder(nn.Module):
"""
Conformer encoder first processes the input with a convolution subsampling layer and then
with a number of conformer blocks.
Args:
input_dim (int, optional): Dimension of input vector
encoder_dim (int, optional): Dimension of conformer encoder
num_layers (int, optional): Number of conformer blocks
num_attention_heads (int, optional): Number of attention heads
feed_forward_expansion_factor (int, optional): Expansion factor of feed forward module
conv_expansion_factor (int, optional): Expansion factor of conformer convolution module
feed_forward_dropout_p (float, optional): Probability of feed forward module dropout
attention_dropout_p (float, optional): Probability of attention module dropout
conv_dropout_p (float, optional): Probability of conformer convolution module dropout
conv_kernel_size (int or tuple, optional): Size of the convolving kernel
half_step_residual (bool): Flag indication whether to use half step residual or not
device (torch.device): torch device (cuda or cpu)
Inputs: inputs, input_lengths
- **inputs** (batch, time, dim): Tensor containing input vector
- **input_lengths** (batch): list of sequence input lengths
Returns: outputs, output_lengths
- **outputs** (batch, out_channels, time): Tensor produces by conformer encoder.
- **output_lengths** (batch): list of sequence output lengths
"""
def __init__(
self,
args,
):
super(ConformerEncoder, self).__init__()
self.blocks = nn.ModuleList([ConformerBlock(
args) for _ in range(args.num_layers)])
def forward(self, x: Tensor, RoPE=None, key_padding_mask=None) -> Tuple[Tensor, Tensor]:
"""
Forward propagate a `inputs` for encoder training.
Args:
inputs (torch.FloatTensor): A input sequence passed to encoder. Typically for inputs this will be a padded
`FloatTensor` of size ``(batch, seq_length, dimension)``.
input_lengths (torch.LongTensor): The length of input tensor. ``(batch)``
Returns:
(Tensor, Tensor)
* outputs (torch.FloatTensor): A output sequence of encoder. `FloatTensor` of size
``(batch, seq_length, dimension)``
* output_lengths (torch.LongTensor): The length of output tensor. ``(batch)``
"""
for block in self.blocks:
x = block(x, RoPE=RoPE, key_padding_mask=key_padding_mask)
return x
class ConformerDecoder(nn.Module):
"""
Conformer encoder first processes the input with a convolution subsampling layer and then
with a number of conformer blocks.
Args:
input_dim (int, optional): Dimension of input vector
encoder_dim (int, optional): Dimension of conformer encoder
num_layers (int, optional): Number of conformer blocks
num_attention_heads (int, optional): Number of attention heads
feed_forward_expansion_factor (int, optional): Expansion factor of feed forward module
conv_expansion_factor (int, optional): Expansion factor of conformer convolution module
feed_forward_dropout_p (float, optional): Probability of feed forward module dropout
attention_dropout_p (float, optional): Probability of attention module dropout
conv_dropout_p (float, optional): Probability of conformer convolution module dropout
conv_kernel_size (int or tuple, optional): Size of the convolving kernel
half_step_residual (bool): Flag indication whether to use half step residual or not
device (torch.device): torch device (cuda or cpu)
Inputs: inputs, input_lengths
- **inputs** (batch, time, dim): Tensor containing input vector
- **input_lengths** (batch): list of sequence input lengths
Returns: outputs, output_lengths
- **outputs** (batch, out_channels, time): Tensor produces by conformer encoder.
- **output_lengths** (batch): list of sequence output lengths
"""
def __init__(
self,
args,
):
super(ConformerDecoder, self).__init__()
self.blocks = nn.ModuleList([DecoderBlock(
args) for _ in range(args.num_decoder_layers)])
def forward(self, x: Tensor, memory: Tensor, RoPE=None, key_padding_mask=None) -> Tuple[Tensor, Tensor]:
"""
Forward propagate a `inputs` for encoder training.
Args:
inputs (torch.FloatTensor): A input sequence passed to encoder. Typically for inputs this will be a padded
`FloatTensor` of size ``(batch, seq_length, dimension)``.
input_lengths (torch.LongTensor): The length of input tensor. ``(batch)``
Returns:
(Tensor, Tensor)
* outputs (torch.FloatTensor): A output sequence of encoder. `FloatTensor` of size
``(batch, seq_length, dimension)``
* output_lengths (torch.LongTensor): The length of output tensor. ``(batch)``
"""
for block in self.blocks:
x = block(x, memory, RoPE=RoPE, key_padding_mask=key_padding_mask)
return x
|