Spaces:
Sleeping
Sleeping
File size: 7,338 Bytes
2f54ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import torch
import torch.nn as nn
from rff.layers import GaussianEncoding
# from nn.probe_features import GraphProbeFeatures
def sparsify_graph(edges, fraction=0.1):
abs_edges = torch.abs(edges)
flat_abs_tensor = abs_edges.flatten()
sorted_tensor, _ = torch.sort(flat_abs_tensor, descending=True)
num_elements = flat_abs_tensor.numel()
top_k = int(num_elements * fraction)
topk_values, topk_indices = torch.topk(flat_abs_tensor, top_k)
mask = torch.zeros_like(flat_abs_tensor, dtype=torch.bool)
mask[topk_indices] = True
mask = mask.view(edges.shape)
return mask
def batch_to_graphs(
weights,
biases,
weights_mean=None,
weights_std=None,
biases_mean=None,
biases_std=None,
sparsify=False,
sym_edges=False
):
device = weights[0].device
bsz = weights[0].shape[0]
num_nodes = weights[0].shape[1] + sum(w.shape[2] for w in weights)
node_features = torch.zeros(bsz, num_nodes, biases[0].shape[-1], device=device)
edge_features = torch.zeros(
bsz, num_nodes, num_nodes, weights[0].shape[-1], device=device
)
row_offset = 0
col_offset = weights[0].shape[1] # no edge to input nodes
for i, w in enumerate(weights):
_, num_in, num_out, _ = w.shape
w_mean = weights_mean[i] if weights_mean is not None else 0
w_std = weights_std[i] if weights_std is not None else 1
w = (w - w_mean) / w_std
if sparsify:
w[~sparsify_graph(w)] = 0
edge_features[
:, row_offset : row_offset + num_in, col_offset : col_offset + num_out
] = w
if sym_edges:
edge_features[
:, col_offset: col_offset + num_out, row_offset: row_offset + num_in
] = torch.swapaxes(w, 1,2)
row_offset += num_in
col_offset += num_out
row_offset = weights[0].shape[1] # no bias in input nodes
for i, b in enumerate(biases):
_, num_out, _ = b.shape
b_mean = biases_mean[i] if biases_mean is not None else 0
b_std = biases_std[i] if biases_std is not None else 1
node_features[:, row_offset : row_offset + num_out] = (b - b_mean) / b_std
row_offset += num_out
return node_features, edge_features
class GraphConstructor(nn.Module):
def __init__(
self,
d_in,
d_edge_in,
d_node,
d_edge,
layer_layout,
rev_edge_features=False,
zero_out_bias=False,
zero_out_weights=False,
inp_factor=1,
input_layers=1,
sin_emb=False,
sin_emb_dim=128,
use_pos_embed=False,
num_probe_features=0,
inr_model=None,
stats=None,
sparsify=False,
sym_edges=False,
):
super().__init__()
self.rev_edge_features = rev_edge_features
self.nodes_per_layer = layer_layout
self.zero_out_bias = zero_out_bias
self.zero_out_weights = zero_out_weights
self.use_pos_embed = use_pos_embed
self.stats = stats if stats is not None else {}
self._d_node = d_node
self._d_edge = d_edge
self.sparse = sparsify
self.sym_edges = sym_edges
self.pos_embed_layout = (
[1] * layer_layout[0] + layer_layout[1:-1] + [1] * layer_layout[-1]
)
self.pos_embed = nn.Parameter(torch.randn(len(self.pos_embed_layout), d_node))
if not self.zero_out_weights:
proj_weight = []
if sin_emb:
proj_weight.append(
GaussianEncoding(
sigma=inp_factor,
input_size=d_edge_in
+ (2 * d_edge_in if rev_edge_features else 0),
encoded_size=sin_emb_dim,
)
)
proj_weight.append(nn.Linear(2 * sin_emb_dim, d_edge))
else:
proj_weight.append(
nn.Linear(
d_edge_in + (2 * d_edge_in if rev_edge_features else 0), d_edge
)
)
for i in range(input_layers - 1):
proj_weight.append(nn.SiLU())
proj_weight.append(nn.Linear(d_edge, d_edge))
self.proj_weight = nn.Sequential(*proj_weight)
if not self.zero_out_bias:
proj_bias = []
if sin_emb:
proj_bias.append(
GaussianEncoding(
sigma=inp_factor,
input_size=d_in,
encoded_size=sin_emb_dim,
)
)
proj_bias.append(nn.Linear(2 * sin_emb_dim, d_node))
else:
proj_bias.append(nn.Linear(d_in, d_node))
for i in range(input_layers - 1):
proj_bias.append(nn.SiLU())
proj_bias.append(nn.Linear(d_node, d_node))
self.proj_bias = nn.Sequential(*proj_bias)
self.proj_node_in = nn.Linear(d_node, d_node)
self.proj_edge_in = nn.Linear(d_edge, d_edge)
if num_probe_features > 0:
self.gpf = GraphProbeFeatures(
d_in=layer_layout[0],
num_inputs=num_probe_features,
inr_model=inr_model,
input_init=None,
proj_dim=d_node,
)
else:
self.gpf = None
def forward(self, inputs):
node_features, edge_features = batch_to_graphs(*inputs, **self.stats,
)
mask = edge_features.sum(dim=-1, keepdim=True) != 0
if self.rev_edge_features:
rev_edge_features = edge_features.transpose(-2, -3)
edge_features = torch.cat(
[edge_features, rev_edge_features, edge_features + rev_edge_features],
dim=-1,
)
mask = mask | mask.transpose(-3, -2)
if self.zero_out_weights:
edge_features = torch.zeros(
(*edge_features.shape[:-1], self._d_edge),
device=edge_features.device,
dtype=edge_features.dtype,
)
else:
edge_features = self.proj_weight(edge_features)
if self.zero_out_bias:
# only zero out bias, not gpf
node_features = torch.zeros(
(*node_features.shape[:-1], self._d_node),
device=node_features.device,
dtype=node_features.dtype,
)
else:
node_features = self.proj_bias(node_features)
if self.gpf is not None:
probe_features = self.gpf(*inputs)
node_features = node_features + probe_features
node_features = self.proj_node_in(node_features)
edge_features = self.proj_edge_in(edge_features)
if self.use_pos_embed:
pos_embed = torch.cat(
[
# repeat(self.pos_embed[i], "d -> 1 n d", n=n)
self.pos_embed[i].unsqueeze(0).expand(1, n, -1)
for i, n in enumerate(self.pos_embed_layout)
],
dim=1,
)
node_features = node_features + pos_embed
return node_features, edge_features, mask
|