File size: 7,338 Bytes
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn as nn
from rff.layers import GaussianEncoding

# from nn.probe_features import GraphProbeFeatures


def sparsify_graph(edges, fraction=0.1):
    abs_edges = torch.abs(edges)
    flat_abs_tensor = abs_edges.flatten()
    sorted_tensor, _ = torch.sort(flat_abs_tensor, descending=True)
    num_elements = flat_abs_tensor.numel()
    top_k = int(num_elements * fraction)
    topk_values, topk_indices = torch.topk(flat_abs_tensor, top_k)
    mask = torch.zeros_like(flat_abs_tensor, dtype=torch.bool)
    mask[topk_indices] = True
    mask = mask.view(edges.shape)
    return mask

def batch_to_graphs(
    weights,
    biases,
    weights_mean=None,
    weights_std=None,
    biases_mean=None,
    biases_std=None,
    sparsify=False,
    sym_edges=False
):
    device = weights[0].device
    bsz = weights[0].shape[0]
    num_nodes = weights[0].shape[1] + sum(w.shape[2] for w in weights)

    node_features = torch.zeros(bsz, num_nodes, biases[0].shape[-1], device=device)
    edge_features = torch.zeros(
        bsz, num_nodes, num_nodes, weights[0].shape[-1], device=device
    )

    row_offset = 0
    col_offset = weights[0].shape[1]  # no edge to input nodes

    for i, w in enumerate(weights):
        _, num_in, num_out, _ = w.shape
        w_mean = weights_mean[i] if weights_mean is not None else 0
        w_std = weights_std[i] if weights_std is not None else 1
        w = (w - w_mean) / w_std
        if sparsify:
            w[~sparsify_graph(w)] = 0
        edge_features[
            :, row_offset : row_offset + num_in, col_offset : col_offset + num_out
        ] = w
        if sym_edges:
            edge_features[
            :, col_offset: col_offset + num_out, row_offset: row_offset + num_in
            ] = torch.swapaxes(w, 1,2)
        row_offset += num_in
        col_offset += num_out

    row_offset = weights[0].shape[1]  # no bias in input nodes
    for i, b in enumerate(biases):
        _, num_out, _ = b.shape
        b_mean = biases_mean[i] if biases_mean is not None else 0
        b_std = biases_std[i] if biases_std is not None else 1
        node_features[:, row_offset : row_offset + num_out] = (b - b_mean) / b_std
        row_offset += num_out

    return node_features, edge_features


class GraphConstructor(nn.Module):
    def __init__(
        self,
        d_in,
        d_edge_in,
        d_node,
        d_edge,
        layer_layout,
        rev_edge_features=False,
        zero_out_bias=False,
        zero_out_weights=False,
        inp_factor=1,
        input_layers=1,
        sin_emb=False,
        sin_emb_dim=128,
        use_pos_embed=False,
        num_probe_features=0,
        inr_model=None,
        stats=None,
        sparsify=False,
        sym_edges=False,
    ):
        super().__init__()
        self.rev_edge_features = rev_edge_features
        self.nodes_per_layer = layer_layout
        self.zero_out_bias = zero_out_bias
        self.zero_out_weights = zero_out_weights
        self.use_pos_embed = use_pos_embed
        self.stats = stats if stats is not None else {}
        self._d_node = d_node
        self._d_edge = d_edge
        self.sparse = sparsify
        self.sym_edges = sym_edges

        self.pos_embed_layout = (
            [1] * layer_layout[0] + layer_layout[1:-1] + [1] * layer_layout[-1]
        )
        self.pos_embed = nn.Parameter(torch.randn(len(self.pos_embed_layout), d_node))

        if not self.zero_out_weights:
            proj_weight = []
            if sin_emb:
                proj_weight.append(
                    GaussianEncoding(
                        sigma=inp_factor,
                        input_size=d_edge_in
                        + (2 * d_edge_in if rev_edge_features else 0),
                        encoded_size=sin_emb_dim,
                    )
                )
                proj_weight.append(nn.Linear(2 * sin_emb_dim, d_edge))
            else:
                proj_weight.append(
                    nn.Linear(
                        d_edge_in + (2 * d_edge_in if rev_edge_features else 0), d_edge
                    )
                )

            for i in range(input_layers - 1):
                proj_weight.append(nn.SiLU())
                proj_weight.append(nn.Linear(d_edge, d_edge))

            self.proj_weight = nn.Sequential(*proj_weight)
        if not self.zero_out_bias:
            proj_bias = []
            if sin_emb:
                proj_bias.append(
                    GaussianEncoding(
                        sigma=inp_factor,
                        input_size=d_in,
                        encoded_size=sin_emb_dim,
                    )
                )
                proj_bias.append(nn.Linear(2 * sin_emb_dim, d_node))
            else:
                proj_bias.append(nn.Linear(d_in, d_node))

            for i in range(input_layers - 1):
                proj_bias.append(nn.SiLU())
                proj_bias.append(nn.Linear(d_node, d_node))

            self.proj_bias = nn.Sequential(*proj_bias)

        self.proj_node_in = nn.Linear(d_node, d_node)
        self.proj_edge_in = nn.Linear(d_edge, d_edge)

        if num_probe_features > 0:
            self.gpf = GraphProbeFeatures(
                d_in=layer_layout[0],
                num_inputs=num_probe_features,
                inr_model=inr_model,
                input_init=None,
                proj_dim=d_node,
            )
        else:
            self.gpf = None

    def forward(self, inputs):
        node_features, edge_features = batch_to_graphs(*inputs, **self.stats,
                                                       )
        mask = edge_features.sum(dim=-1, keepdim=True) != 0
        if self.rev_edge_features:
            rev_edge_features = edge_features.transpose(-2, -3)
            edge_features = torch.cat(
                [edge_features, rev_edge_features, edge_features + rev_edge_features],
                dim=-1,
            )
            mask = mask | mask.transpose(-3, -2)

        if self.zero_out_weights:
            edge_features = torch.zeros(
                (*edge_features.shape[:-1], self._d_edge),
                device=edge_features.device,
                dtype=edge_features.dtype,
            )
        else:
            edge_features = self.proj_weight(edge_features)
        if self.zero_out_bias:
            # only zero out bias, not gpf
            node_features = torch.zeros(
                (*node_features.shape[:-1], self._d_node),
                device=node_features.device,
                dtype=node_features.dtype,
            )
        else:
            node_features = self.proj_bias(node_features)

        if self.gpf is not None:
            probe_features = self.gpf(*inputs)
            node_features = node_features + probe_features

        node_features = self.proj_node_in(node_features)
        edge_features = self.proj_edge_in(edge_features)

        if self.use_pos_embed:
            pos_embed = torch.cat(
                [
                    # repeat(self.pos_embed[i], "d -> 1 n d", n=n)
                    self.pos_embed[i].unsqueeze(0).expand(1, n, -1)
                    for i, n in enumerate(self.pos_embed_layout)
                ],
                dim=1,
            )
            node_features = node_features + pos_embed
        return node_features, edge_features, mask