File size: 12,494 Bytes
49ebc1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import *
from torch.autograd import Function
from .fasterkan_basis import ReflectionalSwitchFunction, SplineLinear

class FasterKANLayer(nn.Module):
    def __init__(
        self,
        input_dim: int,
        output_dim: int,
        grid_min: float = -1.2,
        grid_max: float = 0.2,
        num_grids: int = 8,
        exponent: int = 2,
        inv_denominator: float = 0.5,
        train_grid: bool = False,        
        train_inv_denominator: bool = False,
        #use_base_update: bool = True,
        base_activation = F.silu,
        spline_weight_init_scale: float = 0.667,
    ) -> None:
        super().__init__()
        self.layernorm = nn.LayerNorm(input_dim)
        self.rbf = ReflectionalSwitchFunction(grid_min, grid_max, num_grids, exponent, inv_denominator, train_grid, train_inv_denominator)
        self.spline_linear = SplineLinear(input_dim * num_grids, output_dim, spline_weight_init_scale)
        #self.use_base_update = use_base_update
        #if use_base_update:
        #    self.base_activation = base_activation
        #    self.base_linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        #print("Shape before LayerNorm:", x.shape)  # Debugging line to check the input shape
        x = self.layernorm(x)
        #print("Shape After LayerNorm:", x.shape)
        spline_basis = self.rbf(x).view(x.shape[0], -1)
        #print("spline_basis:", spline_basis.shape)

        #print("-------------------------")
        #ret = 0
        ret = self.spline_linear(spline_basis)
        #print("spline_basis.shape[:-2]:", spline_basis.shape[:-2])
        #print("*spline_basis.shape[:-2]:", *spline_basis.shape[:-2])
        #print("spline_basis.view(*spline_basis.shape[:-2], -1):", spline_basis.view(*spline_basis.shape[:-2], -1).shape)
        #print("ret:", ret.shape)
        #print("-------------------------")
        #if self.use_base_update:
            #base = self.base_linear(self.base_activation(x))
            #print("self.base_activation(x):", self.base_activation(x).shape)
            #print("base:", base.shape)
            #print("@@@@@@@@@")
            #ret += base
        return ret

                
        #spline_basis = spline_basis.reshape(x.shape[0], -1)  # Reshape to [batch_size, input_dim * num_grids]
        #print("spline_basis:", spline_basis.shape)
        
        #spline_weight = self.spline_weight.view(-1, self.spline_weight.shape[0])  # Reshape to [input_dim * num_grids, output_dim]
        #print("spline_weight:", spline_weight.shape)
        
        #spline = torch.matmul(spline_basis, spline_weight)  # Resulting shape: [batch_size, output_dim]
    
        #print("-------------------------")
        #print("Base shape:", base.shape)
        #print("Spline shape:", spline.shape)
        #print("@@@@@@@@@")
        

class FasterKAN(nn.Module):
    def __init__(
        self,
        layers_hidden: List[int],
        grid_min: float = -1.2,
        grid_max: float = 0.2,
        num_grids: int = 8,
        exponent: int = 2,
        inv_denominator: float = 0.5,
        train_grid: bool = False,        
        train_inv_denominator: bool = False,
        #use_base_update: bool = True,
        base_activation = None,
        spline_weight_init_scale: float = 1.0,
    ) -> None:
        super().__init__()
        self.layers = nn.ModuleList([
            FasterKANLayer(
                in_dim, out_dim,
                grid_min=grid_min,
                grid_max=grid_max,
                num_grids=num_grids,
                exponent = exponent,
                inv_denominator = inv_denominator,
                train_grid = train_grid ,
                train_inv_denominator = train_inv_denominator,
                #use_base_update=use_base_update,
                base_activation=base_activation,
                spline_weight_init_scale=spline_weight_init_scale,
            ) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])
        ])
        #print(f"FasterKAN layers_hidden[1:] shape: ", len(layers_hidden[1:]))   
        #print(f"FasterKAN layers_hidden[:-1] shape: ", len(layers_hidden[:-1]))  
        #print("FasterKAN zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])]) 
   
        #print(f"FasterKAN self.faster_kan_layers shape: \n", len(self.layers))
        #print(f"FasterKAN self.faster_kan_layers: \n", self.layers)
    
    def forward(self, x):
        for layer in self.layers:
            #print("FasterKAN layer: \n", layer)
            #print(f"FasterKAN x shape: {x.shape}")
            x = layer(x)
        return x



class BasicResBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(BasicResBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.downsample = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        identity = self.downsample(x)

        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += identity
        out = F.relu(out)

        return out

class SEBlock(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SEBlock, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(DepthwiseSeparableConv, self).__init__()
        self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
                                   stride=stride, padding=padding, groups=in_channels)
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        x = self.depthwise(x)
        x = self.pointwise(x)
        return x

class SelfAttention(nn.Module):
    def __init__(self, in_channels):
        super(SelfAttention, self).__init__()
        self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        batch_size, C, width, height = x.size()
        proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1)
        proj_key = self.key_conv(x).view(batch_size, -1, width * height)
        energy = torch.bmm(proj_query, proj_key)
        attention = F.softmax(energy, dim=-1)
        proj_value = self.value_conv(x).view(batch_size, -1, width * height)
        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(batch_size, C, width, height)
        out = self.gamma * out + x
        return out

class EnhancedFeatureExtractor(nn.Module):
    def __init__(self):
        super(EnhancedFeatureExtractor, self).__init__()
        self.initial_layers = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),  # Increased number of filters
            nn.ReLU(),
            nn.BatchNorm2d(32),  # Added Batch Normalization
            nn.MaxPool2d(2, 2),
            nn.Dropout(0.25),  # Added Dropout
            BasicResBlock(32, 64),
            SEBlock(64, reduction=16),  # Squeeze-and-Excitation block
            nn.MaxPool2d(2, 2),
            nn.Dropout(0.25),  # Added Dropout
            DepthwiseSeparableConv(64, 128, kernel_size=3),  # Increased number of filters
            nn.ReLU(),
            BasicResBlock(128, 256),
            SEBlock(256, reduction=16),
            nn.MaxPool2d(2, 2),
            nn.Dropout(0.25),  # Added Dropout
            SelfAttention(256),  # Added Self-Attention layer
        )
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)  # Global Average Pooling

    def forward(self, x):
        x = self.initial_layers(x)
        x = self.global_avg_pool(x)
        x = x.view(x.size(0), -1)  # Flatten the output for fully connected layers
        return x

class FasterKANvolver(nn.Module):
    def __init__(
        self,
        layers_hidden: List[int],
        grid_min: float = -1.2,
        grid_max: float = 0.2,
        num_grids: int = 8,
        exponent: int = 2,
        inv_denominator: float = 0.5,
        train_grid: bool = False,        
        train_inv_denominator: bool = False,
        #use_base_update: bool = True,
        base_activation = None,
        spline_weight_init_scale: float = 1.0,
    ) -> None:
        super(FasterKANvolver, self).__init__()
        
        # Feature extractor with Convolutional layers
        self.feature_extractor = EnhancedFeatureExtractor()
        """
        nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),  # 1 input channel (grayscale), 16 output channels
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        """

        # Calculate the flattened feature size after convolutional layers
        flat_features = 256 # XX channels, image size reduced to YxY
        
        # Update layers_hidden with the correct input size from conv layers
        layers_hidden = [flat_features] + layers_hidden
        #print(f"FasterKANvolver layers_hidden shape: \n", layers_hidden)
        #print(f"FasterKANvolver layers_hidden[1:] shape: ", len(layers_hidden[1:]))   
        #print(f"FasterKANvolver layers_hidden[:-1] shape: ", len(layers_hidden[:-1]))   
        #print("FasterKANvolver zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])])         
        
        # Define the FasterKAN layers
        self.faster_kan_layers = nn.ModuleList([
            FasterKANLayer(
                in_dim, out_dim,
                grid_min=grid_min,
                grid_max=grid_max,
                num_grids=num_grids,
                exponent=exponent,
                inv_denominator = 0.5,
                train_grid = False,        
                train_inv_denominator = False,
                #use_base_update=use_base_update,
                base_activation=base_activation,
                spline_weight_init_scale=spline_weight_init_scale,
            ) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])
        ])   
        #print(f"FasterKANvolver self.faster_kan_layers shape: \n", len(self.faster_kan_layers))
        #print(f"FasterKANvolver self.faster_kan_layers: \n", self.faster_kan_layers)

    def forward(self, x):
        # Reshape input from [batch_size, 784] to [batch_size, 1, 28, 28] for MNIST [batch_size, 1, 32, 32] for C
        #print(f"FasterKAN x view shape: {x.shape}")
        x = x.view(-1, 3, 32,32)
        #print(f"FasterKAN x view shape: {x.shape}")
        # Apply convolutional layers
        #print(f"FasterKAN x view shape: {x.shape}")
        x = self.feature_extractor(x)
        #print(f"FasterKAN x after feature_extractor shape: {x.shape}")
        x = x.view(x.size(0), -1)  # Flatten the output from the conv layers
        #rint(f"FasterKAN x shape: {x.shape}")
        
        # Pass through FasterKAN layers
        for layer in self.faster_kan_layers:
            #print("FasterKAN layer: \n", layer)
            #print(f"FasterKAN x shape: {x.shape}")
            x = layer(x)
            #print(f"FasterKAN x shape: {x.shape}")
        
        return x