Spaces:
Sleeping
Sleeping
File size: 12,494 Bytes
49ebc1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import *
from torch.autograd import Function
from .fasterkan_basis import ReflectionalSwitchFunction, SplineLinear
class FasterKANLayer(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
grid_min: float = -1.2,
grid_max: float = 0.2,
num_grids: int = 8,
exponent: int = 2,
inv_denominator: float = 0.5,
train_grid: bool = False,
train_inv_denominator: bool = False,
#use_base_update: bool = True,
base_activation = F.silu,
spline_weight_init_scale: float = 0.667,
) -> None:
super().__init__()
self.layernorm = nn.LayerNorm(input_dim)
self.rbf = ReflectionalSwitchFunction(grid_min, grid_max, num_grids, exponent, inv_denominator, train_grid, train_inv_denominator)
self.spline_linear = SplineLinear(input_dim * num_grids, output_dim, spline_weight_init_scale)
#self.use_base_update = use_base_update
#if use_base_update:
# self.base_activation = base_activation
# self.base_linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
#print("Shape before LayerNorm:", x.shape) # Debugging line to check the input shape
x = self.layernorm(x)
#print("Shape After LayerNorm:", x.shape)
spline_basis = self.rbf(x).view(x.shape[0], -1)
#print("spline_basis:", spline_basis.shape)
#print("-------------------------")
#ret = 0
ret = self.spline_linear(spline_basis)
#print("spline_basis.shape[:-2]:", spline_basis.shape[:-2])
#print("*spline_basis.shape[:-2]:", *spline_basis.shape[:-2])
#print("spline_basis.view(*spline_basis.shape[:-2], -1):", spline_basis.view(*spline_basis.shape[:-2], -1).shape)
#print("ret:", ret.shape)
#print("-------------------------")
#if self.use_base_update:
#base = self.base_linear(self.base_activation(x))
#print("self.base_activation(x):", self.base_activation(x).shape)
#print("base:", base.shape)
#print("@@@@@@@@@")
#ret += base
return ret
#spline_basis = spline_basis.reshape(x.shape[0], -1) # Reshape to [batch_size, input_dim * num_grids]
#print("spline_basis:", spline_basis.shape)
#spline_weight = self.spline_weight.view(-1, self.spline_weight.shape[0]) # Reshape to [input_dim * num_grids, output_dim]
#print("spline_weight:", spline_weight.shape)
#spline = torch.matmul(spline_basis, spline_weight) # Resulting shape: [batch_size, output_dim]
#print("-------------------------")
#print("Base shape:", base.shape)
#print("Spline shape:", spline.shape)
#print("@@@@@@@@@")
class FasterKAN(nn.Module):
def __init__(
self,
layers_hidden: List[int],
grid_min: float = -1.2,
grid_max: float = 0.2,
num_grids: int = 8,
exponent: int = 2,
inv_denominator: float = 0.5,
train_grid: bool = False,
train_inv_denominator: bool = False,
#use_base_update: bool = True,
base_activation = None,
spline_weight_init_scale: float = 1.0,
) -> None:
super().__init__()
self.layers = nn.ModuleList([
FasterKANLayer(
in_dim, out_dim,
grid_min=grid_min,
grid_max=grid_max,
num_grids=num_grids,
exponent = exponent,
inv_denominator = inv_denominator,
train_grid = train_grid ,
train_inv_denominator = train_inv_denominator,
#use_base_update=use_base_update,
base_activation=base_activation,
spline_weight_init_scale=spline_weight_init_scale,
) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])
])
#print(f"FasterKAN layers_hidden[1:] shape: ", len(layers_hidden[1:]))
#print(f"FasterKAN layers_hidden[:-1] shape: ", len(layers_hidden[:-1]))
#print("FasterKAN zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])])
#print(f"FasterKAN self.faster_kan_layers shape: \n", len(self.layers))
#print(f"FasterKAN self.faster_kan_layers: \n", self.layers)
def forward(self, x):
for layer in self.layers:
#print("FasterKAN layer: \n", layer)
#print(f"FasterKAN x shape: {x.shape}")
x = layer(x)
return x
class BasicResBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(BasicResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
identity = self.downsample(x)
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += identity
out = F.relu(out)
return out
class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(DepthwiseSeparableConv, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=in_channels)
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return x
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, C, width, height = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = F.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, C, width, height)
out = self.gamma * out + x
return out
class EnhancedFeatureExtractor(nn.Module):
def __init__(self):
super(EnhancedFeatureExtractor, self).__init__()
self.initial_layers = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), # Increased number of filters
nn.ReLU(),
nn.BatchNorm2d(32), # Added Batch Normalization
nn.MaxPool2d(2, 2),
nn.Dropout(0.25), # Added Dropout
BasicResBlock(32, 64),
SEBlock(64, reduction=16), # Squeeze-and-Excitation block
nn.MaxPool2d(2, 2),
nn.Dropout(0.25), # Added Dropout
DepthwiseSeparableConv(64, 128, kernel_size=3), # Increased number of filters
nn.ReLU(),
BasicResBlock(128, 256),
SEBlock(256, reduction=16),
nn.MaxPool2d(2, 2),
nn.Dropout(0.25), # Added Dropout
SelfAttention(256), # Added Self-Attention layer
)
self.global_avg_pool = nn.AdaptiveAvgPool2d(1) # Global Average Pooling
def forward(self, x):
x = self.initial_layers(x)
x = self.global_avg_pool(x)
x = x.view(x.size(0), -1) # Flatten the output for fully connected layers
return x
class FasterKANvolver(nn.Module):
def __init__(
self,
layers_hidden: List[int],
grid_min: float = -1.2,
grid_max: float = 0.2,
num_grids: int = 8,
exponent: int = 2,
inv_denominator: float = 0.5,
train_grid: bool = False,
train_inv_denominator: bool = False,
#use_base_update: bool = True,
base_activation = None,
spline_weight_init_scale: float = 1.0,
) -> None:
super(FasterKANvolver, self).__init__()
# Feature extractor with Convolutional layers
self.feature_extractor = EnhancedFeatureExtractor()
"""
nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1), # 1 input channel (grayscale), 16 output channels
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
"""
# Calculate the flattened feature size after convolutional layers
flat_features = 256 # XX channels, image size reduced to YxY
# Update layers_hidden with the correct input size from conv layers
layers_hidden = [flat_features] + layers_hidden
#print(f"FasterKANvolver layers_hidden shape: \n", layers_hidden)
#print(f"FasterKANvolver layers_hidden[1:] shape: ", len(layers_hidden[1:]))
#print(f"FasterKANvolver layers_hidden[:-1] shape: ", len(layers_hidden[:-1]))
#print("FasterKANvolver zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])])
# Define the FasterKAN layers
self.faster_kan_layers = nn.ModuleList([
FasterKANLayer(
in_dim, out_dim,
grid_min=grid_min,
grid_max=grid_max,
num_grids=num_grids,
exponent=exponent,
inv_denominator = 0.5,
train_grid = False,
train_inv_denominator = False,
#use_base_update=use_base_update,
base_activation=base_activation,
spline_weight_init_scale=spline_weight_init_scale,
) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])
])
#print(f"FasterKANvolver self.faster_kan_layers shape: \n", len(self.faster_kan_layers))
#print(f"FasterKANvolver self.faster_kan_layers: \n", self.faster_kan_layers)
def forward(self, x):
# Reshape input from [batch_size, 784] to [batch_size, 1, 28, 28] for MNIST [batch_size, 1, 32, 32] for C
#print(f"FasterKAN x view shape: {x.shape}")
x = x.view(-1, 3, 32,32)
#print(f"FasterKAN x view shape: {x.shape}")
# Apply convolutional layers
#print(f"FasterKAN x view shape: {x.shape}")
x = self.feature_extractor(x)
#print(f"FasterKAN x after feature_extractor shape: {x.shape}")
x = x.view(x.size(0), -1) # Flatten the output from the conv layers
#rint(f"FasterKAN x shape: {x.shape}")
# Pass through FasterKAN layers
for layer in self.faster_kan_layers:
#print("FasterKAN layer: \n", layer)
#print(f"FasterKAN x shape: {x.shape}")
x = layer(x)
#print(f"FasterKAN x shape: {x.shape}")
return x |