File size: 12,217 Bytes
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import hydra
import torch
import torch.nn.functional as F
from einops.layers.torch import Rearrange

from utils.pooling import HomogeneousAggregator
import torch.nn as nn


class RelationalTransformer(nn.Module):
    def __init__(
        self,
        d_node,
        d_edge,
        d_attn_hid,
        d_node_hid,
        d_edge_hid,
        d_out_hid,
        d_out,
        n_layers,
        n_heads,
        layer_layout,
        graph_constructor,
        dropout=0.0,
        node_update_type="rt",
        disable_edge_updates=False,
        use_cls_token=False,
        pooling_method="cat",
        pooling_layer_idx="last",
        rev_edge_features=False,
        modulate_v=True,
        use_ln=True,
        tfixit_init=False,
    ):
        super().__init__()
        assert use_cls_token == (pooling_method == "cls_token")
        self.pooling_method = pooling_method
        self.pooling_layer_idx = pooling_layer_idx
        self.rev_edge_features = rev_edge_features
        self.nodes_per_layer = layer_layout
        self.construct_graph = hydra.utils.instantiate(
            graph_constructor,
            d_node=d_node,
            d_edge=d_edge,
            layer_layout=layer_layout,
            rev_edge_features=rev_edge_features,
        )

        self.use_cls_token = use_cls_token
        if use_cls_token:
            self.cls_token = nn.Parameter(torch.randn(d_node))

        self.layers = nn.ModuleList(
            [
                torch.jit.script(
                    RTLayer(
                        d_node,
                        d_edge,
                        d_attn_hid,
                        d_node_hid,
                        d_edge_hid,
                        n_heads,
                        dropout,
                        node_update_type=node_update_type,
                        disable_edge_updates=(
                            (disable_edge_updates or (i == n_layers - 1))
                            and pooling_method != "mean_edge"
                            and pooling_layer_idx != "all"
                        ),
                        modulate_v=modulate_v,
                        use_ln=use_ln,
                        tfixit_init=tfixit_init,
                        n_layers=n_layers,
                    )
                )
                for i in range(n_layers)
            ]
        )

        if pooling_method != "cls_token":
            self.pool = HomogeneousAggregator(
                pooling_method,
                pooling_layer_idx,
                layer_layout,
            )

        self.num_graph_features = (
            layer_layout[-1] * d_node
            if pooling_method == "cat" and pooling_layer_idx == "last"
            else d_edge if pooling_method in ("mean_edge", "max_edge") else d_node
        )
        self.proj_out = nn.Sequential(
            nn.Linear(self.num_graph_features, d_out_hid),
            nn.ReLU(),
            # nn.Linear(d_out_hid, d_out_hid),
            # nn.ReLU(),
            nn.Linear(d_out_hid, d_out),
        )

        self.final_features = (None,None,None,None)

    def forward(self, inputs):
        attn_weights = None
        node_features, edge_features, mask = self.construct_graph(inputs)
        if self.use_cls_token:
            node_features = torch.cat(
                [
                    # repeat(self.cls_token, "d -> b 1 d", b=node_features.size(0)),
                    self.cls_token.unsqueeze(0).expand(node_features.size(0), 1, -1),
                    node_features,
                ],
                dim=1,
            )
            edge_features = F.pad(edge_features, (0, 0, 1, 0, 1, 0), value=0)
        for layer in self.layers:
            node_features, edge_features, attn_weights = layer(node_features, edge_features, mask)

        if self.pooling_method == "cls_token":
            graph_features = node_features[:, 0]
        else:
            graph_features = self.pool(node_features, edge_features)
        self.final_features = (graph_features, node_features, edge_features, attn_weights)
        return self.proj_out(graph_features)


class RTLayer(nn.Module):
    def __init__(
        self,
        d_node,
        d_edge,
        d_attn_hid,
        d_node_hid,
        d_edge_hid,
        n_heads,
        dropout,
        node_update_type="rt",
        disable_edge_updates=False,
        modulate_v=True,
        use_ln=True,
        tfixit_init=False,
        n_layers=None,
    ):
        super().__init__()
        self.node_update_type = node_update_type
        self.disable_edge_updates = disable_edge_updates
        self.use_ln = use_ln
        self.n_layers = n_layers

        self.self_attn = torch.jit.script(
            RTAttention(
                d_node,
                d_edge,
                d_attn_hid,
                n_heads,
                modulate_v=modulate_v,
                use_ln=use_ln,
            )
        )
        # self.self_attn = RTAttention(d_hid, d_hid, d_hid, n_heads)
        self.lin0 = Linear(d_node, d_node)
        self.dropout0 = nn.Dropout(dropout)
        if use_ln:
            self.node_ln0 = nn.LayerNorm(d_node)
            self.node_ln1 = nn.LayerNorm(d_node)
        else:
            self.node_ln0 = nn.Identity()
            self.node_ln1 = nn.Identity()

        act_fn = nn.GELU

        self.node_mlp = nn.Sequential(
            Linear(d_node, d_node_hid, bias=False),
            act_fn(),
            Linear(d_node_hid, d_node),
            nn.Dropout(dropout),
        )

        if not self.disable_edge_updates:
            self.edge_updates = EdgeLayer(
                d_node=d_node,
                d_edge=d_edge,
                d_edge_hid=d_edge_hid,
                dropout=dropout,
                act_fn=act_fn,
                use_ln=use_ln,
            )
        else:
            self.edge_updates = NoEdgeLayer()

        if tfixit_init:
            self.fixit_init()

    def fixit_init(self):
        temp_state_dict = self.state_dict()
        n_layers = self.n_layers
        for name, param in self.named_parameters():
            if "weight" in name:
                if name.split(".")[0] in ["node_mlp", "edge_mlp0", "edge_mlp1"]:
                    temp_state_dict[name] = (0.67 * (n_layers) ** (-1.0 / 4.0)) * param
                elif name.split(".")[0] in ["self_attn"]:
                    temp_state_dict[name] = (0.67 * (n_layers) ** (-1.0 / 4.0)) * (
                        param * (2**0.5)
                    )

        self.load_state_dict(temp_state_dict)

    def node_updates(self, node_features, edge_features, mask):
        out = self.self_attn(node_features, edge_features, mask)
        attn_out, attn_weights = out
        node_features = self.node_ln0(
            node_features
            + self.dropout0(
                self.lin0(attn_out)
            )
        )
        node_features = self.node_ln1(node_features + self.node_mlp(node_features))

        return node_features, attn_weights

    def forward(self, node_features, edge_features, mask):
        node_features, attn_weights = self.node_updates(node_features, edge_features, mask)
        edge_features = self.edge_updates(node_features, edge_features, mask)

        return node_features, edge_features, attn_weights


class EdgeLayer(nn.Module):
    def __init__(
        self,
        *,
        d_node,
        d_edge,
        d_edge_hid,
        dropout,
        act_fn,
        use_ln=True,
    ) -> None:
        super().__init__()
        self.edge_mlp0 = EdgeMLP(
            d_edge=d_edge,
            d_node=d_node,
            d_edge_hid=d_edge_hid,
            act_fn=act_fn,
            dropout=dropout,
        )
        self.edge_mlp1 = nn.Sequential(
            Linear(d_edge, d_edge_hid, bias=False),
            act_fn(),
            Linear(d_edge_hid, d_edge),
            nn.Dropout(dropout),
        )
        if use_ln:
            self.eln0 = nn.LayerNorm(d_edge)
            self.eln1 = nn.LayerNorm(d_edge)
        else:
            self.eln0 = nn.Identity()
            self.eln1 = nn.Identity()

    def forward(self, node_features, edge_features, mask):
        edge_features = self.eln0(
            edge_features + self.edge_mlp0(node_features, edge_features)
        )
        edge_features = self.eln1(edge_features + self.edge_mlp1(edge_features))
        return edge_features


class NoEdgeLayer(nn.Module):
    def forward(self, node_features, edge_features, mask):
        return edge_features


class EdgeMLP(nn.Module):
    def __init__(self, *, d_node, d_edge, d_edge_hid, act_fn, dropout):
        super().__init__()
        self.reverse_edge = Rearrange("b n m d -> b m n d")
        self.lin0_e = Linear(2 * d_edge, d_edge_hid)
        self.lin0_s = Linear(d_node, d_edge_hid)
        self.lin0_t = Linear(d_node, d_edge_hid)
        self.act = act_fn()
        self.lin1 = Linear(d_edge_hid, d_edge)
        self.drop = nn.Dropout(dropout)

    def forward(self, node_features, edge_features):
        source_nodes = (
            self.lin0_s(node_features)
            .unsqueeze(-2)
            .expand(-1, -1, node_features.size(-2), -1)
        )
        target_nodes = (
            self.lin0_t(node_features)
            .unsqueeze(-3)
            .expand(-1, node_features.size(-2), -1, -1)
        )

        # reversed_edge_features = self.reverse_edge(edge_features)
        edge_features = self.lin0_e(
            torch.cat([edge_features, self.reverse_edge(edge_features)], dim=-1)
        )
        edge_features = edge_features + source_nodes + target_nodes
        edge_features = self.act(edge_features)
        edge_features = self.lin1(edge_features)
        edge_features = self.drop(edge_features)

        return edge_features


class RTAttention(nn.Module):
    def __init__(self, d_node, d_edge, d_hid, n_heads, modulate_v=None, use_ln=True):
        super().__init__()
        self.n_heads = n_heads
        self.d_node = d_node
        self.d_edge = d_edge
        self.d_hid = d_hid
        self.use_ln = use_ln
        self.modulate_v = modulate_v
        self.scale = 1 / (d_hid**0.5)
        self.split_head_node = Rearrange("b n (h d) -> b h n d", h=n_heads)
        self.split_head_edge = Rearrange("b n m (h d) -> b h n m d", h=n_heads)
        self.cat_head_node = Rearrange("... h n d -> ... n (h d)", h=n_heads)

        self.qkv_node = Linear(d_node, 3 * d_hid, bias=False)
        self.edge_factor = 4 if modulate_v else 3
        self.qkv_edge = Linear(d_edge, self.edge_factor * d_hid, bias=False)
        self.proj_out = Linear(d_hid, d_node)

    def forward(self, node_features, edge_features, mask):
        qkv_node = self.qkv_node(node_features)
        # qkv_node = rearrange(qkv_node, "b n (h d) -> b h n d", h=self.n_heads)
        qkv_node = self.split_head_node(qkv_node)
        q_node, k_node, v_node = torch.chunk(qkv_node, 3, dim=-1)

        qkv_edge = self.qkv_edge(edge_features)
        # qkv_edge = rearrange(qkv_edge, "b n m (h d) -> b h n m d", h=self.n_heads)
        qkv_edge = self.split_head_edge(qkv_edge)
        qkv_edge = torch.chunk(qkv_edge, self.edge_factor, dim=-1)
        # q_edge, k_edge, v_edge, q_edge_b, k_edge_b, v_edge_b = torch.chunk(
        #     qkv_edge, 6, dim=-1
        # )
        # qkv_edge = [item.masked_fill(mask.unsqueeze(1) == 0, 0) for item in qkv_edge]

        q = q_node.unsqueeze(-2) + qkv_edge[0]  # + q_edge_b
        k = k_node.unsqueeze(-3) + qkv_edge[1]  # + k_edge_b
        if self.modulate_v:
            v = v_node.unsqueeze(-3) * qkv_edge[3] + qkv_edge[2]
        else:
            v = v_node.unsqueeze(-3) + qkv_edge[2]
        dots = self.scale * torch.einsum("b h i j d, b h i j d -> b h i j", q, k)
        # dots.masked_fill_(mask.unsqueeze(1).squeeze(-1) == 0, -1e-9)

        attn = F.softmax(dots, dim=-1)
        out = torch.einsum("b h i j, b h i j d -> b h i d", attn, v)
        out = self.cat_head_node(out)
        return self.proj_out(out), attn


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)  # , gain=1 / math.sqrt(2))
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m