Spaces:
Sleeping
Sleeping
File size: 28,792 Bytes
b3fb4dd 2f54ec8 b3fb4dd 49ebc1f b3fb4dd 2f54ec8 a79c5f2 2f54ec8 b3fb4dd 2f54ec8 b3fb4dd 49ebc1f 82a319f b3fb4dd 49ebc1f b3fb4dd 2f54ec8 a79c5f2 766ed77 2f54ec8 b3fb4dd 49ebc1f b3fb4dd 82a319f 49ebc1f b3fb4dd 707b3a3 b3fb4dd 2f54ec8 a79c5f2 b3fb4dd 49ebc1f b3fb4dd 49ebc1f b3fb4dd 49ebc1f a79c5f2 b3fb4dd 707b3a3 2f54ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
import torch
from torch.cuda.amp import autocast
import numpy as np
import time
import os
import yaml
from matplotlib import pyplot as plt
import glob
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed as dist
import pandas as pd
import xgboost as xgb
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from torch.nn import ModuleList
# from inr import INR
# from kan import FasterKAN
class Trainer(object):
"""
A class that encapsulates the training loop for a PyTorch model.
"""
def __init__(self, model, optimizer, criterion, train_dataloader, device, world_size=1, output_dim=2,
scheduler=None, val_dataloader=None, max_iter=np.inf, scaler=None,
grad_clip=False, exp_num=None, log_path=None, exp_name=None, plot_every=None,
cos_inc=False, range_update=None, accumulation_step=1, wandb_log=False, num_quantiles=1,
update_func=lambda x: x):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.scaler = scaler
self.grad_clip = grad_clip
self.cos_inc = cos_inc
self.output_dim = output_dim
self.scheduler = scheduler
self.train_dl = train_dataloader
self.val_dl = val_dataloader
self.train_sampler = self.get_sampler_from_dataloader(train_dataloader)
self.val_sampler = self.get_sampler_from_dataloader(val_dataloader)
self.max_iter = max_iter
self.device = device
self.world_size = world_size
self.exp_num = exp_num
self.exp_name = exp_name
self.log_path = log_path
self.best_state_dict = None
self.plot_every = plot_every
self.logger = None
self.range_update = range_update
self.accumulation_step = accumulation_step
self.wandb = wandb_log
self.num_quantiles = num_quantiles
self.update_func = update_func
# if log_path is not None:
# self.logger =SummaryWriter(f'{self.log_path}/exp{self.exp_num}')
# # print(f"logger path: {self.log_path}/exp{self.exp_num}")
# print("logger is: ", self.logger)
def get_sampler_from_dataloader(self, dataloader):
if hasattr(dataloader, 'sampler'):
if isinstance(dataloader.sampler, torch.utils.data.DistributedSampler):
return dataloader.sampler
elif hasattr(dataloader.sampler, 'sampler'):
return dataloader.sampler.sampler
if hasattr(dataloader, 'batch_sampler') and hasattr(dataloader.batch_sampler, 'sampler'):
return dataloader.batch_sampler.sampler
return None
def fit(self, num_epochs, device, early_stopping=None, only_p=False, best='loss', conf=False):
"""
Fits the model for the given number of epochs.
"""
min_loss = np.inf
best_acc = 0
train_loss, val_loss, = [], []
train_acc, val_acc = [], []
lrs = []
# self.optim_params['lr_history'] = []
epochs_without_improvement = 0
# main_proccess = (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) or self.device == 'cpu'
main_proccess = True # change in a ddp setting
print(f"Starting training for {num_epochs} epochs")
print("is main process: ", main_proccess, flush=True)
global_time = time.time()
self.epoch = 0
for epoch in range(num_epochs):
self.epoch = epoch
start_time = time.time()
plot = (self.plot_every is not None) and (epoch % self.plot_every == 0)
t_loss, t_acc = self.train_epoch(device, epoch=epoch)
t_loss_mean = np.nanmean(t_loss)
train_loss.extend(t_loss)
global_train_accuracy, global_train_loss = self.process_loss(t_acc, t_loss_mean)
if main_proccess: # Only perform this on the master GPU
train_acc.append(global_train_accuracy.mean().item())
v_loss, v_acc = self.eval_epoch(device, epoch=epoch)
v_loss_mean = np.nanmean(v_loss)
val_loss.extend(v_loss)
global_val_accuracy, global_val_loss = self.process_loss(v_acc, v_loss_mean)
if main_proccess: # Only perform this on the master GPU
val_acc.append(global_val_accuracy.mean().item())
current_objective = global_val_loss if best == 'loss' else global_val_accuracy.mean()
improved = False
if best == 'loss':
if current_objective < min_loss:
min_loss = current_objective
improved = True
else:
if current_objective > best_acc:
best_acc = current_objective
improved = True
if improved:
model_name = f'{self.log_path}/{self.exp_num}/{self.exp_name}.pth'
print(f"saving model at {model_name}...")
torch.save(self.model.state_dict(), model_name)
self.best_state_dict = self.model.state_dict()
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
current_lr = self.optimizer.param_groups[0]['lr'] if self.scheduler is None \
else self.scheduler.get_last_lr()[0]
lrs.append(current_lr)
print(f'Epoch {epoch}, lr {current_lr}, Train Loss: {global_train_loss:.6f}, Val Loss:'\
f'{global_val_loss:.6f}, Train Acc: {global_train_accuracy.round(decimals=4).tolist()}, '\
f'Val Acc: {global_val_accuracy.round(decimals=4).tolist()},'\
f'Time: {time.time() - start_time:.2f}s, Total Time: {(time.time() - global_time)/3600} hr', flush=True)
if epoch % 10 == 0:
print(os.system('nvidia-smi'))
if epochs_without_improvement == early_stopping:
print('early stopping!', flush=True)
break
if time.time() - global_time > (23.83 * 3600):
print("time limit reached")
break
return {"num_epochs":num_epochs, "train_loss": train_loss,
"val_loss": val_loss, "train_acc": train_acc, "val_acc": val_acc, "lrs": lrs}
def process_loss(self, acc, loss_mean):
if torch.cuda.is_available() and torch.distributed.is_initialized():
global_accuracy = torch.tensor(acc).cuda() # Convert accuracy to a tensor on the GPU
torch.distributed.reduce(global_accuracy, dst=0, op=torch.distributed.ReduceOp.SUM)
global_loss = torch.tensor(loss_mean).cuda() # Convert loss to a tensor on the GPU
torch.distributed.reduce(global_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
# Divide both loss and accuracy by world size
world_size = torch.distributed.get_world_size()
global_loss /= world_size
global_accuracy /= world_size
else:
global_loss = torch.tensor(loss_mean)
global_accuracy = torch.tensor(acc)
return global_accuracy, global_loss
def load_best_model(self, to_ddp=True, from_ddp=True):
data_dir = f'{self.log_path}/exp{self.exp_num}'
# data_dir = f'{self.log_path}/exp29' # for debugging
state_dict_files = glob.glob(data_dir + '/*.pth')
print("loading model from ", state_dict_files[-1])
state_dict = torch.load(state_dict_files[-1]) if to_ddp else torch.load(state_dict_files[0],map_location=self.device)
if from_ddp:
print("loading distributed model")
# Remove "module." from keys
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.'):
while key.startswith('module.'):
key = key[7:]
new_state_dict[key] = value
state_dict = new_state_dict
# print("state_dict: ", state_dict.keys())
# print("model: ", self.model.state_dict().keys())
self.model.load_state_dict(state_dict, strict=False)
def check_gradients(self):
for name, param in self.model.named_parameters():
if param.grad is not None:
grad_norm = param.grad.norm().item()
if grad_norm > 10:
print(f"Large gradient in {name}: {grad_norm}")
def train_epoch(self, device, epoch):
"""
Trains the model for one epoch.
"""
if self.train_sampler is not None:
try:
self.train_sampler.set_epoch(epoch)
except AttributeError:
pass
self.model.train()
train_loss = []
train_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.train_dl)
for i, batch in enumerate(pbar):
if self.optimizer is not None:
self.optimizer.zero_grad()
loss, acc , y = self.train_batch(batch, i, device)
train_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"train_acc: {acc}, train_loss: {loss.item()}")
if i > self.max_iter:
break
print("number of train_accs: ", train_acc)
return train_loss, all_accs/total
def train_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = torch.stack(batch['audio']['features']).to(device).float()
# cwt = batch['audio']['cwt_mag']
x = x.to(device).float()
fft = fft.to(device).float()
# cwt = cwt.to(device).float()
y = y.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
loss.backward()
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step()
# get predicted classes
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def eval_epoch(self, device, epoch):
"""
Evaluates the model for one epoch.
"""
self.model.eval()
val_loss = []
val_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.val_dl)
for i,batch in enumerate(pbar):
loss, acc, y = self.eval_batch(batch, i, device)
val_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"val_acc: {acc}, val_loss: {loss.item()}")
if i > self.max_iter:
break
return val_loss, all_accs/total
def eval_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = torch.stack(batch['audio']['features']).to(device).float()
# features = batch['audio']['features_arr'].to(device).float()
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred.squeeze(), y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def predict(self, test_dataloader, device):
"""
Returns the predictions of the model on the given dataset.
"""
self.model.eval()
total = 0
all_accs = 0
predictions = []
true_labels = []
pbar = tqdm(test_dataloader)
for i,batch in enumerate(pbar):
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
# features = batch['audio']['features']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
predictions.extend(cls_pred.cpu().numpy())
true_labels.extend(y.cpu().numpy().astype(np.int64))
all_accs += acc
total += len(y)
pbar.set_description("acc: {:.4f}".format(acc))
if i > self.max_iter:
break
return predictions, true_labels, all_accs/total
class INRDatabase:
"""Database to store and manage INRs persistently."""
def __init__(self, save_dir='./inr_database'):
self.inrs = {} # Maps sample_id -> INR
self.optimizers = {} # Maps sample_id -> optimizer state
self.save_dir = save_dir
os.makedirs(save_dir, exist_ok=True)
def get_or_create_inr(self, sample_id, create_fn, device):
"""Get existing INR or create new one if not exists."""
if sample_id not in self.inrs:
# Create new INR
inr = create_fn().to(device)
optimizer = torch.optim.Adam(inr.parameters())
self.inrs[sample_id] = inr
self.optimizers[sample_id] = optimizer
return self.inrs[sample_id], self.optimizers[sample_id]
def set_inr(self, sample_id, inr, optimizer):
self.inrs[sample_id] = inr
self.optimizers[sample_id] = optimizer
def save_state(self):
"""Save all INRs and optimizer states to disk."""
state = {
'inrs': {
sample_id: inr.state_dict()
for sample_id, inr in self.inrs.items()
},
'optimizers': {
sample_id: opt.state_dict()
for sample_id, opt in self.optimizers.items()
}
}
torch.save(state, os.path.join(self.save_dir, 'inr_database.pt'))
def load_state(self, create_fn, device):
"""Load INRs and optimizer states from disk."""
path = os.path.join(self.save_dir, 'inr_database.pt')
if os.path.exists(path):
state = torch.load(path, map_location=device)
# Restore INRs
for sample_id, inr_state in state['inrs'].items():
inr = create_fn().to(device)
inr.load_state_dict(inr_state)
self.inrs[sample_id] = inr
# Restore optimizers
for sample_id, opt_state in state['optimizers'].items():
optimizer = torch.optim.Adam(self.inrs[sample_id].parameters())
optimizer.load_state_dict(opt_state)
self.optimizers[sample_id] = optimizer
class INRTrainer(Trainer):
def __init__(self, hidden_features=128, n_layers=3, in_features=1, out_features=1,
num_steps=5000, lr=1e-3, inr_criterion=torch.nn.MSELoss(), save_dir='./inr_database', *args, **kwargs):
super().__init__(*args, **kwargs)
self.hidden_features = hidden_features
self.n_layers = n_layers
self.in_features = in_features
self.out_features = out_features
self.num_steps = num_steps
self.lr = lr
self.inr_criterion = inr_criterion
# Initialize INR database
self.db = INRDatabase(save_dir)
# Load existing INRs if available
self.db.load_state(self.create_inr, self.device)
def create_inr(self):
"""Factory function to create new INR instances."""
return INR(
hidden_features=self.hidden_features,
n_layers=self.n_layers,
in_features=self.in_features,
out_features=self.out_features
)
def create_kan(self):
return FasterKAN(layers_hidden=[self.in_features] + [self.hidden_features] * (self.n_layers) + [self.out_features],)
def get_sample_id(self, batch, idx):
"""Extract unique identifier for a sample in the batch.
Override this method based on your data structure."""
# Example: if your batch contains unique IDs
if 'id' in batch:
return batch['id'][idx]
# Fallback: create hash from the sample data
sample_data = batch['audio']['array'][idx]
return hash(sample_data.cpu().numpy().tobytes())
def train_inr(self, optimizer, model, coords, values, num_iters=10, plot=False):
# pbar = tqdm(range(num_iters))
for _ in range(num_iters):
optimizer.zero_grad()
pred_values = model(coords.to(self.device)).float()
loss = self.inr_criterion(pred_values.squeeze(), values)
loss.backward()
optimizer.step()
# pbar.set_description(f'loss: {loss.item()}')
if plot:
plt.plot(values.cpu().detach().numpy())
plt.plot(pred_values.cpu().detach().numpy())
plt.title(loss.item())
plt.show()
return model, optimizer
def train_batch(self, batch, batch_idx, device):
"""Train INRs for each sample in batch, persisting progress."""
coords = batch['audio']['coords'].to(device) # [B, N, 1]
fft = batch['audio']['fft_mag'].to(device) # [B, N]
audio = batch['audio']['array'].to(device) # [B, N]
y = batch['label'].to(device).float()
batch_size = coords.shape[0]
values = audio
batch_losses = []
batch_optimizers = []
batch_inrs = []
batch_weights = tuple()
batch_biases = tuple()
# Training loop
# pbar = tqdm(range(self.num_steps), desc="Training INRs")
plot = batch_idx == 0
for i in range(batch_size):
sample_id = self.get_sample_id(batch, i)
inr, optimizer = self.db.get_or_create_inr(sample_id, self.create_inr, device)
inr, optimizer = self.train_inr(optimizer, inr, coords[i], values[i])
self.db.set_inr(sample_id, inr, optimizer)
# pred_values = inr(coords[i]).squeeze()
# batch_losses.append(self.inr_criterion(pred_values, values[i]))
# batch_optimizers.append(optimizer)
state_dict = inr.state_dict()
weights = tuple(
[v.permute(1, 0).unsqueeze(-1).unsqueeze(0).to(device) for w, v in state_dict.items() if "weight" in w]
)
biases = tuple([v.unsqueeze(-1).unsqueeze(0).to(device) for w, v in state_dict.items() if "bias" in w])
if not len(batch_weights):
batch_weights = weights
else:
batch_weights = tuple(
[torch.cat((weights[i], batch_weights[i]), dim=0) for i in range(len(weights))]
)
if not len(batch_biases):
batch_biases = biases
else:
batch_biases = tuple(
[torch.cat((biases[i], batch_biases[i]), dim=0) for i in range(len(biases))]
)
# loss_preds = torch.tensor([0])
# acc = 0
y_pred = self.model(inputs=(batch_weights, batch_biases)).squeeze()
loss_preds = self.criterion(y_pred, y)
self.optimizer.zero_grad()
loss_preds.backward()
self.optimizer.step()
# for i in range(batch_size):
# batch_optimizers[i].zero_grad()
# batch_losses[i] += loss_preds
# batch_losses[i].backward()
# batch_optimizers[i].step()
if batch_idx % 10 == 0: # Adjust frequency as needed
self.db.save_state()
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss_preds, acc, y
def eval_batch(self, batch, batch_idx, device):
"""Evaluate INRs for each sample in batch."""
coords = batch['audio']['coords'].to(device)
fft = batch['audio']['fft_mag'].to(device)
audio = batch['audio']['array'].to(device)
batch_size = coords.shape[0]
# values = torch.cat((
# audio.unsqueeze(-1),
# fft.unsqueeze(-1)
# ), dim=-1)
values = audio
# Get INRs for each sample
batch_inrs = []
for i in range(batch_size):
sample_id = self.get_sample_id(batch, i)
inr, _ = self.db.get_or_create_inr(sample_id, self.create_inr, device)
batch_inrs.append(inr)
# Evaluate
with torch.no_grad():
all_preds = torch.stack([
inr(coords[i])
for i, inr in enumerate(batch_inrs)
])
batch_losses = torch.stack([
self.criterion(all_preds[i].squeeze(), values[i])
for i in range(batch_size)
])
avg_loss = batch_losses.mean().item()
acc = torch.zeros(self.output_dim, device=device)
y = values
return torch.tensor(avg_loss), acc, y
def verify_parallel_gradient_isolation(trainer, batch_size=4, sequence_length=1000):
"""
Verify that gradients remain isolated in parallel training.
"""
device = trainer.device
# Create test data
coords = torch.linspace(0, 1, sequence_length).unsqueeze(-1) # [N, 1]
coords = coords.unsqueeze(0).repeat(batch_size, 1, 1) # [B, N, 1]
# Create synthetic signals
targets = torch.stack([
torch.sin(2 * torch.pi * (i + 1) * coords.squeeze(-1))
for i in range(batch_size)
]).to(device)
# Create batch of INRs
inrs = trainer.create_batch_inrs()
# Store initial parameters
initial_params = [{name: param.clone().detach()
for name, param in inr.named_parameters()}
for inr in inrs]
# Create mock batch
batch = {
'audio': {
'coords': coords.to(device),
'fft_mag': targets.clone(),
'array': targets.clone()
}
}
# Run one training step
trainer.train_batch(batch, 0, device)
# Verify parameter changes
isolation_verified = True
for i, inr in enumerate(inrs):
params_changed = False
for name, param in inr.named_parameters():
if not torch.allclose(param, initial_params[i][name]):
params_changed = True
# Verify that the changes are unique to this INR
for j, other_inr in enumerate(inrs):
if i != j:
other_param = dict(other_inr.named_parameters())[name]
if not torch.allclose(other_param, initial_params[j][name]):
isolation_verified = False
print(f"Warning: Parameter {name} of INR {j} changed when only INR {i} should have changed")
return isolation_verified
class XGBoostTrainer():
def __init__(self, model_args, train_ds, val_ds, test_ds):
self.train_ds = train_ds
self.test_ds = test_ds
print("creating train dataframe...")
self.x_train, self.y_train = self.create_dataframe(train_ds, save_name='train')
print("creating validation dataframe...")
self.x_val, self.y_val = self.create_dataframe(val_ds, save_name='val')
print("creating test dataframe...")
self.x_test, self.y_test = self.create_dataframe(test_ds, save_name='test')
# Convert the data to DMatrix format
self.dtrain = xgb.DMatrix(self.x_train, label=self.y_train)
self.dval = xgb.DMatrix(self.x_val, label=self.y_val)
self.dtest = xgb.DMatrix(self.x_test, label=self.y_test)
# Model initialization
self.model_args = model_args
self.model = xgb.XGBClassifier(**model_args)
def create_dataframe(self, ds, save_name='train'):
try:
df = pd.read_csv(f"tasks/utils/dfs/{save_name}.csv")
except FileNotFoundError:
data = []
# Iterate over the dataset
pbar = tqdm(enumerate(ds))
for i, batch in pbar:
label = batch['label']
features = batch['audio']['features']
# Flatten the nested dictionary structure
feature_dict = {'label': label}
for k, v in features.items():
if isinstance(v, dict):
for sub_k, sub_v in v.items():
feature_dict[f"{k}_{sub_k}"] = sub_v[0].item() # Aggregate (e.g., mean)
data.append(feature_dict)
# Convert to DataFrame
df = pd.DataFrame(data)
print(os.getcwd())
df.to_csv(f"tasks/utils/dfs/{save_name}.csv", index=False)
X = df.drop(columns=['label'])
y = df['label']
return X, y
def fit(self):
# Train using the `train` method with early stopping
params = {
'objective': 'binary:logistic',
'eval_metric': 'logloss',
**self.model_args
}
evals_result = {}
num_boost_round = 1000 # Set a large number of boosting rounds
# Watchlist to monitor performance on train and validation data
watchlist = [(self.dtrain, 'train'), (self.dval, 'eval')]
# Train the model
self.model = xgb.train(
params,
self.dtrain,
num_boost_round=num_boost_round,
evals=watchlist,
early_stopping_rounds=10, # Early stopping after 10 rounds with no improvement
evals_result=evals_result,
verbose_eval=True # Show evaluation results for each iteration
)
return evals_result
def train_xgboost_in_batches(self, dataloader, eval_metric="logloss"):
evals_result = {}
for i, batch in enumerate(dataloader):
# Convert batch data to NumPy arrays
X_batch = torch.cat([batch[key].view(batch[key].size(0), -1) for key in batch if key != "label"],
dim=1).numpy()
y_batch = batch["label"].numpy()
# Create DMatrix for XGBoost
dtrain = xgb.DMatrix(X_batch, label=y_batch)
# Use `train` with each batch
self.model = xgb.train(
params,
dtrain,
num_boost_round=1000, # Use a large number of rounds
evals=[(self.dval, 'eval')],
eval_metric=eval_metric,
early_stopping_rounds=10,
evals_result=evals_result,
verbose_eval=False # Avoid printing every iteration
)
# Optionally print progress
if i % 10 == 0:
print(f"Batch {i + 1}/{len(dataloader)} processed.")
return evals_result
def predict(self):
# Predict probabilities for class 1
y_prob = self.model.predict(self.dtest, output_margin=False)
# Convert probabilities to binary labels (0 or 1) using a threshold (e.g., 0.5)
y_pred = (y_prob >= 0.5).astype(int)
# Evaluate performance
accuracy = accuracy_score(self.y_test, y_pred)
roc_auc = roc_auc_score(self.y_test, y_prob)
print(f'Accuracy: {accuracy:.4f}')
print(f'ROC AUC Score: {roc_auc:.4f}')
print(classification_report(self.y_test, y_pred))
def plot_results(self, evals_result):
train_logloss = evals_result["train"]["logloss"]
val_logloss = evals_result["eval"]["logloss"]
iterations = range(1, len(train_logloss) + 1)
# Plot
plt.figure(figsize=(8, 5))
plt.plot(iterations, train_logloss, label="Train LogLoss", color="blue")
plt.plot(iterations, val_logloss, label="Validation LogLoss", color="red")
plt.xlabel("Boosting Round (Iteration)")
plt.ylabel("Log Loss")
plt.title("Training and Validation Log Loss over Iterations")
plt.legend()
plt.grid()
plt.show()
|