IlayMalinyak
cnnkan
2f54ec8
raw
history blame
5.46 kB
from torch.utils.data import DataLoader
from .utils.data import FFTDataset, SplitDataset
from datasets import load_dataset
from .utils.train import Trainer, XGBoostTrainer
from .utils.models import CNNKan, KanEncoder, CNNKanFeaturesEncoder
from .utils.data_utils import *
from huggingface_hub import login
import yaml
import datetime
import json
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from collections import OrderedDict
# local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_date = datetime.date.today().strftime("%Y-%m-%d")
datetime_dir = f"frugal_{current_date}"
args_dir = 'tasks/utils/config.yaml'
data_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Data'])
exp_num = data_args.exp_num
model_name = data_args.model_name
model_args = Container(**yaml.safe_load(open(args_dir, 'r'))['CNNEncoder'])
mlp_args = Container(**yaml.safe_load(open(args_dir, 'r'))['MLP'])
model_args_f = Container(**yaml.safe_load(open(args_dir, 'r'))['CNNEncoder_f'])
conformer_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Conformer'])
kan_args = Container(**yaml.safe_load(open(args_dir, 'r'))['KAN'])
boost_args = Container(**yaml.safe_load(open(args_dir, 'r'))['XGBoost'])
if not os.path.exists(f"{data_args.log_dir}/{datetime_dir}"):
os.makedirs(f"{data_args.log_dir}/{datetime_dir}")
with open("../logs//token.txt", "r") as f:
api_key = f.read()
# local_rank, world_size, gpus_per_node = setup()
local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
login(api_key)
dataset = load_dataset("rfcx/frugalai", streaming=True)
train_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=True)
train_dl = DataLoader(train_ds, batch_size=data_args.batch_size, collate_fn=collate_fn)
val_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=False)
val_dl = DataLoader(val_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
test_ds = FFTDataset(dataset["test"])
test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
# data = []
#
# # Iterate over the dataset
# for i, batch in enumerate(train_ds):
# label = batch['label']
# features = batch['audio']['features']
#
# # Flatten the nested dictionary structure
# feature_dict = {'label': label}
# for k, v in features.items():
# if isinstance(v, dict):
# for sub_k, sub_v in v.items():
# feature_dict[f"{k}_{sub_k}"] = sub_v[0].item() # Aggregate (e.g., mean)
# else:
# print(k, v.shape) # Aggregate (e.g., mean)
#
# data.append(feature_dict)
# print(i)
#
# if i > 1000: # Limit to 10 iterations
# break
#
# # Convert to DataFrame
# df = pd.DataFrame(data)
# Plot distributions colored by label
# plt.figure()
# for col in df.columns:
# if col != 'label':
# sns.kdeplot(df, x=col, hue='label', fill=True, alpha=0.5)
# plt.title(f'Distribution of {col}')
# plt.show()
# exit()
# trainer = XGBoostTrainer(boost_args.get_dict(), train_ds, val_ds, test_ds)
# res = trainer.fit()
# trainer.predict()
# trainer.plot_results(res)
# exit()
# model = DualEncoder(model_args, model_args_f, conformer_args)
# model = FasterKAN([18000,64,64,16,1])
model = CNNKan(model_args, conformer_args, kan_args.get_dict())
# model = CNNKanFeaturesEncoder(model_args, mlp_args, kan_args.get_dict())
# model.kan.speed()
# model = KanEncoder(kan_args.get_dict())
model = model.to(local_rank)
# state_dict = torch.load(data_args.checkpoint_path, map_location=torch.device('cpu'))
# new_state_dict = OrderedDict()
# for key, value in state_dict.items():
# if key.startswith('module.'):
# key = key[7:]
# new_state_dict[key] = value
# missing, unexpected = model.load_state_dict(new_state_dict)
# model = DDP(model, device_ids=[local_rank], output_device=local_rank)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of parameters: {num_params}")
loss_fn = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
total_steps = int(data_args.num_epochs) * 1000
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=total_steps,
eta_min=float((5e-4)/10))
# missing, unexpected = model.load_state_dict(torch.load(model_args.checkpoint_path))
# print(f"Missing keys: {missing}")
# print(f"Unexpected keys: {unexpected}")
trainer = Trainer(model=model, optimizer=optimizer,
criterion=loss_fn, output_dim=model_args.output_dim, scaler=None,
scheduler=None, train_dataloader=train_dl,
val_dataloader=val_dl, device=local_rank,
exp_num=datetime_dir, log_path=data_args.log_dir,
range_update=None,
accumulation_step=1, max_iter=np.inf,
exp_name=f"frugal_kan_{exp_num}")
fit_res = trainer.fit(num_epochs=100, device=local_rank,
early_stopping=10, only_p=False, best='loss', conf=True)
output_filename = f'{data_args.log_dir}/{datetime_dir}/{model_name}_frugal_{exp_num}.json'
with open(output_filename, "w") as f:
json.dump(fit_res, f, indent=2)
preds, tru, acc = trainer.predict(test_dl, local_rank)
print(f"Accuracy: {acc}")