IlayMalinyak
locally tested
82a319f
Data:
# Basics
log_dir: 'tasks/models'
# Data
dataset: "FFTDataset"
data_dir: None
model_name: "CNNEncoder"
batch_size: 4
num_epochs: 10
exp_num: 2
max_len_spectra: 4096
max_days_lc: 270
lc_freq: 0.0208
create_umap: True
checkpoint_path: 'tasks/models/frugal_2025-01-29/frugal_kan_2.pth'
CNNEncoder:
# Model
in_channels: 2
num_layers: 4
stride: 1
encoder_dims: [32,64,128]
kernel_size: 3
dropout_p: 0.3
output_dim: 2
beta: 1
load_checkpoint: False
checkpoint_num: 1
activation: "silu"
sine_w0: 30.0
avg_output: False
MLP:
input_dim: 6
hidden_dims: [16,32,6]
dropout: 0.2
KAN:
layers_hidden: [1125,32,8,1]
grid_min: -1.2
grid_max: 1.2
num_grids: 8
exponent: 2
KAN_INR:
layers_hidden: [1,1024,128,128,1]
grid_min: -1.2
grid_max: 1.2
num_grids: 8
exponent: 2
CNNEncoder_f:
# Model
in_channels: 32
num_layers: 4
stride: 1
encoder_dims: [32,64,128]
kernel_size: 3
dropout_p: 0.3
output_dim: 2
beta: 1
load_checkpoint: True
checkpoint_num: 1
activation: "silu"
sine_w0: 1.0
avg_output: True
Conformer:
encoder: ["mhsa_pro", "conv"]
timeshift: false
num_layers: 4
encoder_dim: 128
num_heads: 8
kernel_size: 3
dropout_p: 0.2
norm: "postnorm"
RelationalTransformer:
d_node: 32
d_edge: 32
d_attn_hid: 16
d_node_hid: 16
d_edge_hid: 16
d_out_hid: 16
d_out: 1
n_layers: 4
n_heads: 4
dropout: 0.1
INR:
in_features : 2
n_layers : 2
hidden_features : 64
out_features : 32
XGBoost:
objective : 'binary:logistic'
eval_metric : 'logloss'
use_label_encoder : False
n_estimators : 500
learning_rate : 0.1
max_depth : 5
subsample : 0.8
colsample_bytree : 0.8
random_state : 42
Optimization:
# Optimization
max_lr: 1e-5
weight_decay: 5e-6
warmup_pct: 0.3
steps_per_epoch: 3500