Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from typing import * | |
from torch.autograd import Function | |
from .feature_extractor import EnhancedFeatureExtractor | |
from .fasterkan_layers import FasterKANLayer | |
class FasterKAN(nn.Module): | |
def __init__( | |
self, | |
layers_hidden: List[int], | |
grid_min: float = -1.2, | |
grid_max: float = 1.2, | |
num_grids: int = 8, | |
exponent: int = 2, | |
inv_denominator: float = 0.5, | |
train_grid: bool = False, | |
train_inv_denominator: bool = False, | |
#use_base_update: bool = True, | |
base_activation = None, | |
spline_weight_init_scale: float = 1.0, | |
) -> None: | |
super().__init__() | |
self.layers = nn.ModuleList([ | |
FasterKANLayer( | |
in_dim, out_dim, | |
grid_min=grid_min, | |
grid_max=grid_max, | |
num_grids=num_grids, | |
exponent = exponent, | |
inv_denominator = inv_denominator, | |
train_grid = train_grid , | |
train_inv_denominator = train_inv_denominator, | |
#use_base_update=use_base_update, | |
base_activation=base_activation, | |
spline_weight_init_scale=spline_weight_init_scale, | |
) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:]) | |
]) | |
#print(f"FasterKAN layers_hidden[1:] shape: ", len(layers_hidden[1:])) | |
#print(f"FasterKAN layers_hidden[:-1] shape: ", len(layers_hidden[:-1])) | |
#print("FasterKAN zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])]) | |
#print(f"FasterKAN self.faster_kan_layers shape: \n", len(self.layers)) | |
#print(f"FasterKAN self.faster_kan_layers: \n", self.layers) | |
def forward(self, x): | |
for layer in self.layers: | |
#print("FasterKAN layer: \n", layer) | |
#print(f"FasterKAN x shape: {x.shape}") | |
x = layer(x) | |
return x | |
class FasterKANvolver(nn.Module): | |
def __init__( | |
self, | |
layers_hidden: List[int], | |
grid_min: float = -1.2, | |
grid_max: float = 0.2, | |
num_grids: int = 8, | |
exponent: int = 2, | |
inv_denominator: float = 0.5, | |
train_grid: bool = False, | |
train_inv_denominator: bool = False, | |
#use_base_update: bool = True, | |
base_activation = None, | |
spline_weight_init_scale: float = 1.0, | |
view = [-1, 1, 28, 28], | |
) -> None: | |
super(FasterKANvolver, self).__init__() | |
self.view = view | |
# Feature extractor with Convolutional layers | |
self.feature_extractor = EnhancedFeatureExtractor(colors = view[1]) | |
""" | |
nn.Sequential( | |
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1), # 1 input channel (grayscale), 16 output channels | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2) | |
) | |
""" | |
# Calculate the flattened feature size after convolutional layers | |
flat_features = 256 # XX channels, image size reduced to YxY | |
# Update layers_hidden with the correct input size from conv layers | |
layers_hidden = [flat_features] + layers_hidden | |
#print(f"FasterKANvolver layers_hidden shape: \n", layers_hidden) | |
#print(f"FasterKANvolver layers_hidden[1:] shape: ", len(layers_hidden[1:])) | |
#print(f"FasterKANvolver layers_hidden[:-1] shape: ", len(layers_hidden[:-1])) | |
#print("FasterKANvolver zip shape: \n", *[(in_dim, out_dim) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:])]) | |
# Define the FasterKAN layers | |
self.faster_kan_layers = nn.ModuleList([ | |
FasterKANLayer( | |
in_dim, out_dim, | |
grid_min=grid_min, | |
grid_max=grid_max, | |
num_grids=num_grids, | |
exponent=exponent, | |
inv_denominator = 0.5, | |
train_grid = False, | |
train_inv_denominator = False, | |
#use_base_update=use_base_update, | |
base_activation=base_activation, | |
spline_weight_init_scale=spline_weight_init_scale, | |
) for in_dim, out_dim in zip(layers_hidden[:-1], layers_hidden[1:]) | |
]) | |
#print(f"FasterKANvolver self.faster_kan_layers shape: \n", len(self.faster_kan_layers)) | |
#print(f"FasterKANvolver self.faster_kan_layers: \n", self.faster_kan_layers) | |
def forward(self, x): | |
# Reshape input from [batch_size, 784] to [batch_size, 1, 28, 28] for MNIST [batch_size, 1, 32, 32] for C | |
#print(f"FasterKAN x view shape: {x.shape}") | |
# Handle different input shapes based on the length of view | |
x = x.view(self.view[0], self.view[1], self.view[2], self.view[3]) | |
#print(f"FasterKAN x view shape: {x.shape}") | |
# Apply convolutional layers | |
#print(f"FasterKAN x view shape: {x.shape}") | |
x = self.feature_extractor(x) | |
#print(f"FasterKAN x after feature_extractor shape: {x.shape}") | |
x = x.view(x.size(0), -1) # Flatten the output from the conv layers | |
#rint(f"FasterKAN x shape: {x.shape}") | |
# Pass through FasterKAN layers | |
for layer in self.faster_kan_layers: | |
#print("FasterKAN layer: \n", layer) | |
#print(f"FasterKAN x shape: {x.shape}") | |
x = layer(x) | |
#print(f"FasterKAN x shape: {x.shape}") | |
return x |