Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from typing import * | |
from torch.autograd import Function | |
class BasicResBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride=1): | |
super(BasicResBlock, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
self.downsample = nn.Sequential() | |
if stride != 1 or in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(out_channels) | |
) | |
def forward(self, x): | |
identity = self.downsample(x) | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += identity | |
out = F.relu(out) | |
return out | |
class SEBlock(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(SEBlock, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y.expand_as(x) | |
class DepthwiseSeparableConv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): | |
super(DepthwiseSeparableConv, self).__init__() | |
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, | |
stride=stride, padding=padding, groups=in_channels) | |
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
def forward(self, x): | |
x = self.depthwise(x) | |
x = self.pointwise(x) | |
return x | |
class SelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super(SelfAttention, self).__init__() | |
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1) | |
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1) | |
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.gamma = nn.Parameter(torch.zeros(1)) | |
def forward(self, x): | |
batch_size, C, width, height = x.size() | |
proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1) | |
proj_key = self.key_conv(x).view(batch_size, -1, width * height) | |
energy = torch.bmm(proj_query, proj_key) | |
attention = F.softmax(energy, dim=-1) | |
proj_value = self.value_conv(x).view(batch_size, -1, width * height) | |
out = torch.bmm(proj_value, attention.permute(0, 2, 1)) | |
out = out.view(batch_size, C, width, height) | |
out = self.gamma * out + x | |
return out | |
class EnhancedFeatureExtractor(nn.Module): | |
def __init__(self, | |
colors = 3): | |
super(EnhancedFeatureExtractor, self).__init__() | |
self.initial_layers = nn.Sequential( | |
nn.Conv2d(colors, 32, kernel_size=3, stride=1, padding=1), # Increased number of filters | |
nn.ReLU(), | |
nn.BatchNorm2d(32), # Added Batch Normalization | |
nn.MaxPool2d(2, 2), | |
nn.Dropout(0.25), # Added Dropout | |
BasicResBlock(32, 64), | |
SEBlock(64, reduction=16), # Squeeze-and-Excitation block | |
nn.MaxPool2d(2, 2), | |
nn.Dropout(0.25), # Added Dropout | |
DepthwiseSeparableConv(64, 128, kernel_size=3), # Increased number of filters | |
nn.ReLU(), | |
BasicResBlock(128, 256), | |
SEBlock(256, reduction=16), | |
nn.MaxPool2d(2, 2), | |
nn.Dropout(0.25), # Added Dropout | |
SelfAttention(256), # Added Self-Attention layer | |
) | |
self.global_avg_pool = nn.AdaptiveAvgPool2d(1) # Global Average Pooling | |
def forward(self, x): | |
x = self.initial_layers(x) | |
x = self.global_avg_pool(x) | |
x = x.view(x.size(0), -1) # Flatten the output for fully connected layers | |
return x |