IlayMalinyak commited on
Commit
1379e6f
Β·
1 Parent(s): fad866a

moved filed to util

Browse files
tasks/Modules/__init__.py β†’ __init__.py RENAMED
File without changes
tasks/audio.py CHANGED
@@ -3,17 +3,16 @@ from datetime import datetime
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
  import numpy as np
6
- import random
7
  import os
8
  import torch
9
  from torch.utils.data import DataLoader
10
 
11
  from .utils.evaluation import AudioEvaluationRequest
12
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
13
- from data import FFTDataset
14
- from models import DualEncoder
15
- from train import Trainer
16
- from data_utils import collate_fn, Container
17
  import yaml
18
 
19
  from dotenv import load_dotenv
@@ -61,7 +60,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
61
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
62
  #--------------------------------------------------------------------------------------------
63
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
64
- args_path = 'config.yaml'
65
  data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data'])
66
  model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder'])
67
  model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f'])
 
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
  import numpy as np
 
6
  import os
7
  import torch
8
  from torch.utils.data import DataLoader
9
 
10
  from .utils.evaluation import AudioEvaluationRequest
11
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
12
+ from .utils.data import FFTDataset
13
+ from .utils.models import DualEncoder
14
+ from .utils.train import Trainer
15
+ from .utils.data_utils import collate_fn, Container
16
  import yaml
17
 
18
  from dotenv import load_dotenv
 
60
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
61
  #--------------------------------------------------------------------------------------------
62
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
63
+ args_path = 'utils/config.yaml'
64
  data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data'])
65
  model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder'])
66
  model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f'])
tasks/{Modules β†’ utils/Modules}/ResNet18.py RENAMED
File without changes
tasks/utils/Modules/__init__.py ADDED
File without changes
tasks/{Modules β†’ utils/Modules}/cnn.py RENAMED
File without changes
tasks/{Modules β†’ utils/Modules}/conformer.py RENAMED
File without changes
tasks/{Modules β†’ utils/Modules}/mhsa_pro.py RENAMED
File without changes
tasks/{config.yaml β†’ utils/config.yaml} RENAMED
File without changes
tasks/{data.py β†’ utils/data.py} RENAMED
File without changes
tasks/{data_utils.py β†’ utils/data_utils.py} RENAMED
File without changes
tasks/{models.py β†’ utils/models.py} RENAMED
@@ -1,7 +1,7 @@
1
  import torch
2
  import torch.nn as nn
3
- from Modules.conformer import ConformerEncoder, ConformerDecoder
4
- from Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
5
 
6
  class ConvBlock(nn.Module):
7
  def __init__(self, args, num_layer) -> None:
 
1
  import torch
2
  import torch.nn as nn
3
+ from .Modules.conformer import ConformerEncoder, ConformerDecoder
4
+ from .Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
5
 
6
  class ConvBlock(nn.Module):
7
  def __init__(self, args, num_layer) -> None:
tasks/{train.py β†’ utils/train.py} RENAMED
File without changes