Spaces:
Running
Running
IlayMalinyak
commited on
Commit
Β·
1379e6f
1
Parent(s):
fad866a
moved filed to util
Browse files- tasks/Modules/__init__.py β __init__.py +0 -0
- tasks/audio.py +5 -6
- tasks/{Modules β utils/Modules}/ResNet18.py +0 -0
- tasks/utils/Modules/__init__.py +0 -0
- tasks/{Modules β utils/Modules}/cnn.py +0 -0
- tasks/{Modules β utils/Modules}/conformer.py +0 -0
- tasks/{Modules β utils/Modules}/mhsa_pro.py +0 -0
- tasks/{config.yaml β utils/config.yaml} +0 -0
- tasks/{data.py β utils/data.py} +0 -0
- tasks/{data_utils.py β utils/data_utils.py} +0 -0
- tasks/{models.py β utils/models.py} +2 -2
- tasks/{train.py β utils/train.py} +0 -0
tasks/Modules/__init__.py β __init__.py
RENAMED
File without changes
|
tasks/audio.py
CHANGED
@@ -3,17 +3,16 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import numpy as np
|
6 |
-
import random
|
7 |
import os
|
8 |
import torch
|
9 |
from torch.utils.data import DataLoader
|
10 |
|
11 |
from .utils.evaluation import AudioEvaluationRequest
|
12 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
13 |
-
from data import FFTDataset
|
14 |
-
from models import DualEncoder
|
15 |
-
from train import Trainer
|
16 |
-
from data_utils import collate_fn, Container
|
17 |
import yaml
|
18 |
|
19 |
from dotenv import load_dotenv
|
@@ -61,7 +60,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
61 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
62 |
#--------------------------------------------------------------------------------------------
|
63 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
-
args_path = 'config.yaml'
|
65 |
data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data'])
|
66 |
model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder'])
|
67 |
model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f'])
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import numpy as np
|
|
|
6 |
import os
|
7 |
import torch
|
8 |
from torch.utils.data import DataLoader
|
9 |
|
10 |
from .utils.evaluation import AudioEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
+
from .utils.data import FFTDataset
|
13 |
+
from .utils.models import DualEncoder
|
14 |
+
from .utils.train import Trainer
|
15 |
+
from .utils.data_utils import collate_fn, Container
|
16 |
import yaml
|
17 |
|
18 |
from dotenv import load_dotenv
|
|
|
60 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
61 |
#--------------------------------------------------------------------------------------------
|
62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
args_path = 'utils/config.yaml'
|
64 |
data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data'])
|
65 |
model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder'])
|
66 |
model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f'])
|
tasks/{Modules β utils/Modules}/ResNet18.py
RENAMED
File without changes
|
tasks/utils/Modules/__init__.py
ADDED
File without changes
|
tasks/{Modules β utils/Modules}/cnn.py
RENAMED
File without changes
|
tasks/{Modules β utils/Modules}/conformer.py
RENAMED
File without changes
|
tasks/{Modules β utils/Modules}/mhsa_pro.py
RENAMED
File without changes
|
tasks/{config.yaml β utils/config.yaml}
RENAMED
File without changes
|
tasks/{data.py β utils/data.py}
RENAMED
File without changes
|
tasks/{data_utils.py β utils/data_utils.py}
RENAMED
File without changes
|
tasks/{models.py β utils/models.py}
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
from Modules.conformer import ConformerEncoder, ConformerDecoder
|
4 |
-
from Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
|
5 |
|
6 |
class ConvBlock(nn.Module):
|
7 |
def __init__(self, args, num_layer) -> None:
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
from .Modules.conformer import ConformerEncoder, ConformerDecoder
|
4 |
+
from .Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
|
5 |
|
6 |
class ConvBlock(nn.Module):
|
7 |
def __init__(self, args, num_layer) -> None:
|
tasks/{train.py β utils/train.py}
RENAMED
File without changes
|