Data: # Basics log_dir: 'tasks/models' # Data dataset: "FFTDataset" data_dir: None model_name: "CNNEncoder" batch_size: 32 num_epochs: 10 exp_num: 2 max_len_spectra: 4096 max_days_lc: 270 lc_freq: 0.0208 create_umap: True checkpoint_path: 'tasks/models/frugal_2025-01-21/frugal_kan_2.pth' CNNEncoder: # Model in_channels: 2 num_layers: 4 stride: 1 encoder_dims: [32,64,128] kernel_size: 3 dropout_p: 0.3 output_dim: 2 beta: 1 load_checkpoint: False checkpoint_num: 1 activation: "silu" sine_w0: 1.0 avg_output: False KAN: layers_hidden: [1125,32,8,8,1] grid_min: -1.2 grid_max: 1.2 num_grids: 8 exponent: 2 CNNEncoder_f: # Model in_channels: 1 num_layers: 4 stride: 1 encoder_dims: [32,64,128] kernel_size: 3 dropout_p: 0.3 output_dim: 2 beta: 1 load_checkpoint: True checkpoint_num: 1 activation: "silu" sine_w0: 1.0 avg_output: True Conformer: encoder: ["mhsa_pro", "conv"] timeshift: false num_layers: 4 encoder_dim: 128 num_heads: 8 kernel_size: 3 dropout_p: 0.2 norm: "postnorm" Optimization: # Optimization max_lr: 1e-5 weight_decay: 5e-6 warmup_pct: 0.3 steps_per_epoch: 3500