Data: # Basics log_dir: 'tasks/models' # Data dataset: "FFTDataset" data_dir: None model_name: "CNNEncoder" batch_size: 4 num_epochs: 10 exp_num: 2 max_len_spectra: 4096 max_days_lc: 270 lc_freq: 0.0208 create_umap: True checkpoint_path: 'tasks/models/frugal_2025-01-29/frugal_kan_2.pth' CNNEncoder: # Model in_channels: 2 num_layers: 4 stride: 1 encoder_dims: [32,64,128] kernel_size: 3 dropout_p: 0.3 output_dim: 2 beta: 1 load_checkpoint: False checkpoint_num: 1 activation: "silu" sine_w0: 30.0 avg_output: False MLP: input_dim: 6 hidden_dims: [16,32,6] dropout: 0.2 KAN: layers_hidden: [1125,32,8,1] grid_min: -1.2 grid_max: 1.2 num_grids: 8 exponent: 2 KAN_INR: layers_hidden: [1,1024,128,128,1] grid_min: -1.2 grid_max: 1.2 num_grids: 8 exponent: 2 CNNEncoder_f: # Model in_channels: 32 num_layers: 4 stride: 1 encoder_dims: [32,64,128] kernel_size: 3 dropout_p: 0.3 output_dim: 2 beta: 1 load_checkpoint: True checkpoint_num: 1 activation: "silu" sine_w0: 1.0 avg_output: True Conformer: encoder: ["mhsa_pro", "conv"] timeshift: false num_layers: 4 encoder_dim: 128 num_heads: 8 kernel_size: 3 dropout_p: 0.2 norm: "postnorm" RelationalTransformer: d_node: 32 d_edge: 32 d_attn_hid: 16 d_node_hid: 16 d_edge_hid: 16 d_out_hid: 16 d_out: 1 n_layers: 4 n_heads: 4 dropout: 0.1 INR: in_features : 2 n_layers : 2 hidden_features : 64 out_features : 32 XGBoost: objective : 'binary:logistic' eval_metric : 'logloss' use_label_encoder : False n_estimators : 500 learning_rate : 0.1 max_depth : 5 subsample : 0.8 colsample_bytree : 0.8 random_state : 42 Optimization: # Optimization max_lr: 1e-5 weight_decay: 5e-6 warmup_pct: 0.3 steps_per_epoch: 3500