import torch import torch.nn as nn import torch.nn.functional as F import math from typing import * from torch.autograd import Function class RSWAFFunction(Function): @staticmethod def forward(ctx, input, grid, inv_denominator, train_grid, train_inv_denominator): # Compute the forward pass #print('\n') #print(f"Forward pass - grid: {(grid[0].item(),grid[-1].item())}, inv_denominator: {inv_denominator.item()}") #print(f"grid.shape: {grid.shape }") #print(f"grid: {(grid[0],grid[-1]) }") #print(f"inv_denominator.shape: {inv_denominator.shape }") #print(f"inv_denominator: {inv_denominator }") diff = (input[..., None] - grid) diff_mul = diff.mul(inv_denominator) tanh_diff = torch.tanh(diff) tanh_diff_deriviative = -tanh_diff.mul(tanh_diff) + 1 # sech^2(x) = 1 - tanh^2(x) # Save tensors for backward pass ctx.save_for_backward(input, tanh_diff, tanh_diff_deriviative, diff, inv_denominator) ctx.train_grid = train_grid ctx.train_inv_denominator = train_inv_denominator return tanh_diff_deriviative ##### SOS NOT SURE HOW grad_inv_denominator, grad_grid ARE CALCULATED CORRECTLY YET ##### MUST CHECK https://github.com/pytorch/pytorch/issues/74802 ##### MUST CHECK https://www.changjiangcai.com/studynotes/2020-10-18-Custom-Function-Extending-PyTorch/ ##### MUST CHECK https://pytorch.org/tutorials/intermediate/custom_function_double_backward_tutorial.html ##### MUST CHECK https://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html ##### MUST CHECK https://gist.github.com/Hanrui-Wang/bf225dc0ccb91cdce160539c0acc853a @staticmethod def backward(ctx, grad_output): # Retrieve saved tensors input, tanh_diff, tanh_diff_deriviative, diff, inv_denominator = ctx.saved_tensors grad_grid = None grad_inv_denominator = None #print(f"tanh_diff_deriviative shape: {tanh_diff_deriviative.shape }") #print(f"tanh_diff shape: {tanh_diff.shape }") #print(f"grad_output shape: {grad_output.shape }") # Compute the backward pass for the input grad_input = -2 * tanh_diff * tanh_diff_deriviative * grad_output #print(f"Backward pass 1 - grad_input: {(grad_input.min().item(), grad_input.max().item())}") #print(f"grad_input shape: {grad_input.shape }") #print(f"grad_input.sum(dim=-1): {grad_input.sum(dim=-1).shape}") grad_input = grad_input.sum(dim=-1).mul(inv_denominator) #print(f"Backward pass 2 - grad_input: {(grad_input.min().item(), grad_input.max().item())}") #print(f"grad_input: {grad_input}") #print(f"grad_input shape: {grad_input.shape }") # Compute the backward pass for grid if ctx.train_grid: #print('\n') #print(f"grad_grid shape: {grad_grid.shape }") grad_grid = -inv_denominator * grad_output.sum(dim=0).sum(dim=0)#-(inv_denominator * grad_output * tanh_diff_deriviative).sum(dim=0) #-inv_denominator * grad_output.sum(dim=0).sum(dim=0) #print(f"Backward pass - grad_grid: {(grad_grid[0].item(),grad_grid[-1].item())}") #print(f"grad_grid.shape: {grad_grid.shape }") #print(f"grad_grid: {(grad_grid[0],grad_grid[-1]) }") #print(f"inv_denominator shape: {inv_denominator.shape }") #print(f"grad_grid shape: {grad_grid.shape }") # Compute the backward pass for inv_denominator if ctx.train_inv_denominator: grad_inv_denominator = (grad_output* diff).sum() #(grad_output * diff * tanh_diff_deriviative).sum() #(grad_output* diff).sum() #print(f"Backward pass - grad_inv_denominator: {grad_inv_denominator.item()}") #print(f"diff shape: {diff.shape }") #print(f"grad_inv_denominator shape: {grad_inv_denominator.shape }") #print(f"grad_inv_denominator : {grad_inv_denominator }") return grad_input, grad_grid, grad_inv_denominator, None, None # same number as tensors or parameters class ReflectionalSwitchFunction(nn.Module): def __init__( self, grid_min: float = -1.2, grid_max: float = 0.2, num_grids: int = 8, exponent: int = 2, inv_denominator: float = 0.5, train_grid: bool = False, train_inv_denominator: bool = False, ): super().__init__() grid = torch.linspace(grid_min, grid_max, num_grids) self.train_grid = torch.tensor(train_grid, dtype=torch.bool) self.train_inv_denominator = torch.tensor(train_inv_denominator, dtype=torch.bool) self.grid = torch.nn.Parameter(grid, requires_grad=train_grid) #print(f"grid initial shape: {self.grid.shape }") self.inv_denominator = torch.nn.Parameter(torch.tensor(inv_denominator, dtype=torch.float32), requires_grad=train_inv_denominator) # Cache the inverse of the denominator def forward(self, x): return RSWAFFunction.apply(x, self.grid, self.inv_denominator, self.train_grid, self.train_inv_denominator) class SplineLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, init_scale: float = 0.1, **kw) -> None: self.init_scale = init_scale super().__init__(in_features, out_features, bias=False, **kw) def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.weight) # Using Xavier Uniform initialization