using t5 model
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
11 |
import streamlit as st
|
12 |
from dotenv import load_dotenv
|
13 |
import PyPDF2
|
|
|
14 |
|
15 |
load_dotenv()
|
16 |
|
@@ -25,6 +26,16 @@ class LegalExpert:
|
|
25 |
[self.system_prompt, self.user_prompt]
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# create llm pipeline for huggingfaceHub model
|
29 |
model_name = "google/flan-t5-xl"
|
30 |
|
@@ -33,7 +44,7 @@ class LegalExpert:
|
|
33 |
self.openai_gpt4_llm = ChatOpenAI(temperature=0, max_tokens=256)
|
34 |
# self.chat = ChatAnthropic()
|
35 |
|
36 |
-
self.chain = LLMChain(llm=self.
|
37 |
|
38 |
def get_system_prompt(self):
|
39 |
system_prompt = """
|
|
|
11 |
import streamlit as st
|
12 |
from dotenv import load_dotenv
|
13 |
import PyPDF2
|
14 |
+
import torch
|
15 |
|
16 |
load_dotenv()
|
17 |
|
|
|
26 |
[self.system_prompt, self.user_prompt]
|
27 |
)
|
28 |
|
29 |
+
# falcon model
|
30 |
+
model_name = "tiiuae/falcon-40b-instruct"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
custom_pipeline = pipeline("text-generation",
|
33 |
+
model=model_name,
|
34 |
+
tokenizer=tokenizer,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
trust_remote_code=True,
|
37 |
+
device_map="auto")
|
38 |
+
|
39 |
# create llm pipeline for huggingfaceHub model
|
40 |
model_name = "google/flan-t5-xl"
|
41 |
|
|
|
44 |
self.openai_gpt4_llm = ChatOpenAI(temperature=0, max_tokens=256)
|
45 |
# self.chat = ChatAnthropic()
|
46 |
|
47 |
+
self.chain = LLMChain(llm=self.huggingface_llm, prompt=full_prompt_template)
|
48 |
|
49 |
def get_system_prompt(self):
|
50 |
system_prompt = """
|