Spaces:
Configuration error
Configuration error
File size: 2,201 Bytes
1d0b1d6 f628059 71dd60b f628059 302b21a 1d0b1d6 6c4de3b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 6c4de3b 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b 302b21a 71dd60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TranslationPipeline
print("Loading the model...")
hf_token = os.getenv("HF_AUTH_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found. Please set the HF_AUTH_TOKEN environment variable.")
# Title and Description
st.title("Translation Web App")
st.write("""
### Powered by Hugging Face and Streamlit
This app uses a pre-trained NLP model from Hugging Face to translate text between languages.
Enter text in the source language, select source and target languages, and see the translation!
""")
# Initialize Hugging Face Translation Pipeline
@st.cache_resource
def load_translation_pipeline():
print("Loading translation model...")
model = AutoModelForSeq2SeqLM.from_pretrained(
'issai/tilmash',
use_auth_token=hf_token
)
tokenizer = AutoTokenizer.from_pretrained(
"issai/tilmash",
use_auth_token=hf_token
)
return TranslationPipeline(model=model, tokenizer=tokenizer, max_length=1000)
tilmash = load_translation_pipeline()
languages = {
"Kazakh (Cyrillic)": "kaz_Cyrl",
"Russian (Cyrillic)": "rus_Cyrl",
"English (Latin)": "eng_Latn",
"Turkish (Latin)": "tur_Latn"
}
src_lang = st.selectbox("Select source language:", options=list(languages.keys()), index=0)
tgt_lang = st.selectbox("Select target language:", options=list(languages.keys()), index=2)
user_input = st.text_area("Enter text to translate:", "")
if st.button("Translate Text"):
if user_input.strip():
result = tilmash(user_input, src_lang=languages[src_lang], tgt_lang=languages[tgt_lang])
translation = result[0]['translation_text']
st.subheader("Translation Result")
st.write(f"**Translated Text:** {translation}")
else:
st.warning("Please enter some text to translate!")
# Sidebar with About Information
st.sidebar.title("About")
st.sidebar.info("""
This app demonstrates the use of Hugging Face's NLP models with Streamlit.
It uses the `issai/tilmash` model for translation between languages such as Kazakh, Russian, English, and Turkish.
""")
print('After translation operation')
|