File size: 2,201 Bytes
1d0b1d6
f628059
71dd60b
f628059
302b21a
 
1d0b1d6
 
 
6c4de3b
302b21a
71dd60b
302b21a
 
71dd60b
 
302b21a
 
71dd60b
302b21a
71dd60b
 
6c4de3b
 
 
 
 
 
 
 
71dd60b
302b21a
71dd60b
302b21a
71dd60b
 
 
 
 
 
302b21a
71dd60b
 
 
 
 
 
302b21a
71dd60b
 
 
 
 
302b21a
71dd60b
302b21a
 
 
 
 
71dd60b
302b21a
 
71dd60b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TranslationPipeline

print("Loading the model...")

hf_token = os.getenv("HF_AUTH_TOKEN")
if not hf_token:
    raise ValueError("Hugging Face token not found. Please set the HF_AUTH_TOKEN environment variable.")

# Title and Description
st.title("Translation Web App")
st.write("""
### Powered by Hugging Face and Streamlit
This app uses a pre-trained NLP model from Hugging Face to translate text between languages.  
Enter text in the source language, select source and target languages, and see the translation!
""")

# Initialize Hugging Face Translation Pipeline
@st.cache_resource
def load_translation_pipeline():
    print("Loading translation model...")
    model = AutoModelForSeq2SeqLM.from_pretrained(
        'issai/tilmash',
        use_auth_token=hf_token
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "issai/tilmash",
        use_auth_token=hf_token
    )
    return TranslationPipeline(model=model, tokenizer=tokenizer, max_length=1000)

tilmash = load_translation_pipeline()

languages = {
    "Kazakh (Cyrillic)": "kaz_Cyrl",
    "Russian (Cyrillic)": "rus_Cyrl",
    "English (Latin)": "eng_Latn",
    "Turkish (Latin)": "tur_Latn"
}

src_lang = st.selectbox("Select source language:", options=list(languages.keys()), index=0)
tgt_lang = st.selectbox("Select target language:", options=list(languages.keys()), index=2)

user_input = st.text_area("Enter text to translate:", "")

if st.button("Translate Text"):
    if user_input.strip():
        result = tilmash(user_input, src_lang=languages[src_lang], tgt_lang=languages[tgt_lang])
        translation = result[0]['translation_text']

        st.subheader("Translation Result")
        st.write(f"**Translated Text:** {translation}")
    else:
        st.warning("Please enter some text to translate!")

# Sidebar with About Information
st.sidebar.title("About")
st.sidebar.info("""
This app demonstrates the use of Hugging Face's NLP models with Streamlit.  
It uses the `issai/tilmash` model for translation between languages such as Kazakh, Russian, English, and Turkish.
""")

print('After translation operation')