Spaces:
Build error
Build error
File size: 65,376 Bytes
46c2bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 |
#include "train.h"
#include "common.h"
#include <random>
#include <sstream>
#include <functional>
struct random_normal_distribution {
std::mt19937 gen;
std::normal_distribution<float> rd;
float min;
float max;
};
struct random_uniform_distribution {
std::mt19937 gen;
std::uniform_real_distribution<float> rd;
};
struct train_state * init_train_state() {
struct train_state * state = new struct train_state;
state->train_its = 0;
state->train_samples = 0;
state->train_tokens = 0;
state->train_epochs = 0;
state->shuffle_samples_hash = 0;
state->shuffle_sample_count = 0;
state->shuffle_next_sample = 0;
state->shuffle_rng_state_current = "";
state->shuffle_rng_state_next = "";
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->loss_after = 0.0f;
return state;
}
void free_train_state(struct train_state * state) {
delete state->opt;
delete state;
}
struct random_normal_distribution * init_random_normal_distribution(
int seed, float mean, float std, float min, float max
) {
struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution));
rnd->gen = std::mt19937(seed);
rnd->rd = std::normal_distribution<float>{mean, std};
rnd->min = min;
rnd->max = max;
return rnd;
}
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) {
struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution));
rnd->gen = std::mt19937(seed);
rnd->rd = std::uniform_real_distribution<float>{min, max};
return rnd;
}
void free_random_normal_distribution (struct random_normal_distribution * rnd) {
free(rnd);
}
void free_random_uniform_distribution(struct random_uniform_distribution * rnd) {
free(rnd);
}
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
float scale = 1.0f; // xavier
switch (tensor->n_dims) {
case 1:
scale /= sqrtf((float) tensor->ne[0]);
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
*dst = scale * frand_normal(rnd);
}
break;
case 2:
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
*dst = scale * frand_normal(rnd);
}
}
break;
case 3:
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
*dst = scale * frand_normal(rnd);
}
}
}
break;
case 4:
scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
*dst = scale * frand_normal(rnd);
}
}
}
}
break;
default:
die("Unsupported tensor->n_dims");
};
return tensor;
}
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
switch (tensor->n_dims) {
case 1:
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
*dst = frand_uniform(rnd);
}
break;
case 2:
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
*dst = frand_uniform(rnd);
}
}
break;
case 3:
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
*dst = frand_uniform(rnd);
}
}
}
break;
case 4:
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
*dst = frand_uniform(rnd);
}
}
}
}
break;
default:
die("Unsupported tensor->n_dims");
};
return tensor;
}
float frand() {
return (float)rand()/((float)(RAND_MAX) + 1.0f);
}
float frand_normal(struct random_normal_distribution * rnd) {
return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
}
float frand_uniform(struct random_uniform_distribution * rnd) {
return rnd->rd(rnd->gen);
}
int clamp(const int v, const int min, const int max) {
return ((v < min) ? (min) : (v > max) ? (max) : v);
}
float fclamp(const float v, const float min, const float max) {
return ((v < min) ? (min) : (v > max) ? (max) : v);
}
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
GGML_ASSERT(tensor->n_dims == 1);
GGML_ASSERT(tensor->ne[0] == ne0);
}
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
GGML_ASSERT(tensor->n_dims == 2);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
}
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
GGML_ASSERT(tensor->n_dims == 3);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
}
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
GGML_ASSERT(tensor->n_dims == 4);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
GGML_ASSERT(tensor->ne[3] == ne3);
}
int64_t get_example_targets_batch(
struct llama_context * lctx,
struct ggml_tensor * tokens_input,
struct ggml_tensor * target_probs,
int64_t example_id,
const size_t * samples_offs,
const size_t * samples_begin,
const size_t * samples_size,
size_t samples_count,
const llama_token * train_data,
size_t n_train_data,
bool separate_with_eos,
bool separate_with_bos,
bool fill_with_next_samples,
bool sample_random_offsets
) {
GGML_ASSERT(samples_count > 0);
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_probs->n_dims == 3);
int64_t n_vocab = target_probs->ne[0];
int64_t n_tokens = tokens_input->ne[0];
int64_t n_batch = tokens_input->ne[1];
GGML_ASSERT(n_vocab == target_probs->ne[0]);
GGML_ASSERT(n_tokens == target_probs->ne[1]);
GGML_ASSERT(n_batch == target_probs->ne[2]);
int64_t used_samples = 0;
ggml_set_f32(target_probs, 0.0f);
llama_token bos = llama_token_bos(lctx);
llama_token eos = llama_token_eos(lctx);
// printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
for (int k=0; k<n_batch; ++k) {
// printf("%s: batch %d\n", __func__, k);
size_t sample_idx = (example_id + used_samples) % samples_count;
size_t sample_offs = sample_random_offsets ? samples_offs[sample_idx] : 0;
size_t sample_begin = samples_begin[sample_idx];
size_t sample_size = samples_size[sample_idx];
++used_samples;
// printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
GGML_ASSERT(sample_begin+sample_size-1 < n_train_data);
ggml_set_i32_nd(tokens_input, 0, k, 0, 0, bos);
bool sample_separation_eos = !separate_with_eos;
bool sample_separation_bos = !separate_with_bos;
for (int64_t i=0; i<n_tokens; ++i) {
llama_token token = eos;
if (sample_offs >= sample_size && fill_with_next_samples) {
if (!sample_separation_eos) {
// insert eos token to separate samples
sample_separation_eos = true;
} else if (!sample_separation_bos) {
// insert bos token to separate samples
sample_separation_bos = true;
token = bos;
} else {
// sample separation is done, continue with next sample
sample_separation_eos = !separate_with_eos;
sample_separation_bos = !separate_with_bos;
sample_offs = 0;
sample_idx = (example_id + used_samples) % samples_count;
sample_begin = samples_begin[sample_idx];
sample_size = samples_size[sample_idx];
++used_samples;
}
}
// note: no else-if here
if (sample_offs < sample_size) {
token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1));
++sample_offs;
}
ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f);
if (i+1<n_tokens) {
ggml_set_i32_nd(tokens_input, (int) (i + 1), (int) k, 0, 0, token);
}
}
}
return used_samples;
}
void mt19937_set_state(std::mt19937& rng, const std::string& rng_state) {
std::stringstream s_rng_state;
s_rng_state.imbue(std::locale::classic());
s_rng_state.exceptions(std::stringstream::failbit);
s_rng_state.str(rng_state);
s_rng_state >> rng;
}
std::string mt19937_get_state(const std::mt19937& rng) {
std::stringstream s_rng_state;
s_rng_state.imbue(std::locale::classic());
s_rng_state << rng;
return s_rng_state.str();
}
std::string mt19937_seed_to_state(unsigned seed) {
std::mt19937 rng(seed);
return mt19937_get_state(rng);
}
std::string shuffle_samples(
const std::string & rng_state,
size_t * shuffled_offs,
size_t * shuffled_begins,
size_t * shuffled_sizes,
const size_t * begins,
const size_t * sizes,
size_t count) {
if (count == 0) return rng_state;
std::mt19937 rng;
mt19937_set_state(rng, rng_state);
// sort indices by random value for each index
std::vector<size_t> idcs;
{
std::vector<unsigned> rnd;
idcs.resize(count);
rnd.resize(count);
for (unsigned i=0; i<count; ++i) {
idcs[i] = i;
rnd[i] = rng();
}
std::sort(idcs.begin(), idcs.end(), [&rnd](size_t a, size_t b){
// stable sort for reproducibility
return (rnd[a] == rnd[b]) ? (a < b) : (rnd[a] < rnd[b]);
});
}
// create random offsets
for (unsigned i=0; i<count; ++i) {
shuffled_offs[i] = (size_t) ((sizes[idcs[i]] - 1) * ((double) rng() / (double) (rng.max()-1)));
}
// reorder begins and sizes by sorted indices
for (unsigned i=0; i<count; ++i) {
shuffled_begins[i] = begins[idcs[i]];
}
for (unsigned i=0; i<count; ++i) {
shuffled_sizes[i] = sizes[idcs[i]];
}
return mt19937_get_state(rng);
}
size_t hash_combine(size_t h1, size_t h2) {
return h1 ^ (h2 << 1);
}
size_t compute_samples_hash(const char* fn, const size_t* samples_begin, const size_t* samples_size, size_t sample_count) {
std::hash<std::string> h_string;
std::hash<unsigned long long> h_ull;
size_t h = h_string(std::string(fn));
h = hash_combine(h, h_ull((unsigned long long) sample_count));
for (size_t i=0; i< sample_count; ++i) {
h = hash_combine(h, h_ull((unsigned long long) samples_begin[i]));
h = hash_combine(h, h_ull((unsigned long long) samples_size[i]));
}
return h;
}
std::string replace_str(const char * s, const char * needle, const char * replacement) {
std::string str = s;
size_t pos = str.find(needle);
if (pos != std::string::npos) {
str.replace(pos, strlen(needle), replacement);
}
return str;
}
void print_duration(double fmillis) {
if (fmillis < 1000.0f) {
printf("%.1fms", (float) fmillis);
return;
}
const int64_t one_sec = 1000;
const int64_t one_min = one_sec * 60;
const int64_t one_hour = one_min * 60;
const int64_t one_day = one_hour * 24;
int64_t millis = (int64_t) fmillis;
int64_t days = millis/one_day;
int64_t hours = (millis - days*one_day)/one_hour;
int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min;
int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec;
// to print int64_t either cast to (long long int) or use macro PRId64 from <inttypes.h>
if (days > 0) {
printf("%lldd ", (long long int) days);
}
printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds);
}
float cosine_decay(int64_t step, int64_t decay_steps, float minimum) {
if (step > decay_steps) {
step = decay_steps;
}
const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
const float decay = (1 - minimum)*cosine_decay + minimum;
return decay;
}
float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) {
while (step > decay_steps) {
step -= decay_steps;
decay_steps = (int64_t) (restart_step_mult * decay_steps);
}
return cosine_decay(step, decay_steps, minimum);
}
float learning_schedule(
int64_t step,
int64_t warmup_steps,
int64_t cos_decay_steps,
float learning_rate,
float overall_minimum,
float cos_decay_minimum,
float cos_decay_restart_step_mult,
bool enable_restart) {
float result =
(step < warmup_steps)
? (float) step / (float) warmup_steps
: enable_restart
? cosine_decay_restart(
step - warmup_steps,
cos_decay_steps,
cos_decay_minimum,
cos_decay_restart_step_mult)
: cosine_decay(
step,
cos_decay_steps,
cos_decay_minimum);
float min = overall_minimum / learning_rate;
result = min + result * (1.0f - min);
return result;
}
static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) {
GGML_ASSERT(a != NULL);
GGML_ASSERT(b != NULL);
GGML_ASSERT(a->type == b->type);
GGML_ASSERT(ggml_are_same_shape(a, b));
GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b));
return true;
}
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) {
if (dst == NULL) {
return;
}
struct ggml_tensor * t = ggml_get_tensor(ctx, name);
GGML_ASSERT(are_same_layout(dst, t));
memcpy(dst->data, t->data, ggml_nbytes(t));
if (strlen(ggml_get_name(dst)) == 0) {
ggml_set_name(dst, name);
}
}
// gguf constants
static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type";
static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam";
static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs";
static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version";
static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count";
static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count";
static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count";
static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized";
static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss";
static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss";
static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count";
static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count";
static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss";
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step";
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j";
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k";
static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end";
static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count";
static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments";
static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments";
static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s";
static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y";
static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version";
static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count";
static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count";
static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count";
static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count";
static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash";
static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state";
static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count";
static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample";
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
const std::string skey(key); \
const int kid = gguf_find_key(ctx, skey.c_str()); \
if (kid >= 0) { \
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
if (ktype != (type)) { \
die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
} \
(dst) = func(ctx, kid); \
} else if (req) { \
die_fmt("key not found in model: %s", skey.c_str()); \
} \
}
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) {
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
uint32_t file_version;
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION);
GGML_ASSERT(file_version == 0);
GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT);
GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT);
GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED);
uint64_t nx;
GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT);
opt->nx = (size_t) nx;
// don't call ggml_opt_init until optimizer type and optimizer specific parameters are know
std::string opt_type;
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
opt->params.type = GGML_OPT_ADAM;
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT);
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
opt->params.type = GGML_OPT_LBFGS;
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP);
GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J);
GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K);
GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END);
GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT);
ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
} else {
die("unknown optimizer type\n");
}
}
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) {
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past);
gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter);
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
switch (opt->params.type) {
case GGML_OPT_ADAM:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement);
ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
if (opt->adam.pf) {
ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
}
gguf_add_tensor(fctx, opt->adam.m);
gguf_add_tensor(fctx, opt->adam.v);
if (opt->adam.pf) {
gguf_add_tensor(fctx, opt->adam.pf);
}
} break;
case GGML_OPT_LBFGS:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step);
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j);
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k);
gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement);
ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
if (opt->lbfgs.pf) {
ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
}
ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
gguf_add_tensor(fctx, opt->lbfgs.x);
gguf_add_tensor(fctx, opt->lbfgs.xp);
gguf_add_tensor(fctx, opt->lbfgs.g);
gguf_add_tensor(fctx, opt->lbfgs.gp);
gguf_add_tensor(fctx, opt->lbfgs.d);
if (opt->lbfgs.pf) {
gguf_add_tensor(fctx, opt->lbfgs.pf);
}
gguf_add_tensor(fctx, opt->lbfgs.lmal);
gguf_add_tensor(fctx, opt->lbfgs.lmys);
gguf_add_tensor(fctx, opt->lbfgs.lms);
gguf_add_tensor(fctx, opt->lbfgs.lmy);
} break;
}
}
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) {
if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) {
return false;
}
uint32_t file_version;
GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION);
GGML_ASSERT(file_version <= 1);
if (file_version == 0) {
GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT);
GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT);
GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT);
} else if (file_version == 1) {
GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT);
GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT);
GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT);
GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT);
GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH);
GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE);
GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT);
GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE);
}
load_opt_context_gguf(fctx, f_ggml_ctx, train->opt);
return true;
}
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) {
gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash);
gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str());
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count);
gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample);
save_opt_context_gguf(fctx, train->opt);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
size = 0;
} else {
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
die_fmt("read error: %s", strerror(errno));
}
if (ret != 1) {
die("unexpectedly reached end of file");
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
die_fmt("write error: %s", strerror(errno));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
static size_t utf8_len(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
// mark each byte with its utf8 unit number.
// returns the number of utf8 characters.
// e.g. when bytes == '\x61\xD0\xB0\x62',
// then utf8_units will become [0,0,1,0]
// utf8_nunits will become [1,2,2,1] and 3 is returned.
// bytes where utf8_units is zero, are the begin of an utf8 character.
static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) {
size_t offs = 0;
size_t count_utf8 = 0;
while(offs < count) {
int len = (int) utf8_len(bytes[offs]);
for (int i=0; i<len; ++i) {
utf8_units[offs+i] = i;
utf8_nunits[offs+i] = len;
}
offs += len;
++count_utf8;
}
return count_utf8;
}
size_t tokenize_file(
struct llama_context * lctx,
const char * filename,
const std::string & sample_start,
bool include_sample_start,
bool overlapping_samples,
unsigned context_length,
std::vector<llama_token> & out_tokens,
std::vector<size_t> & out_samples_begin,
std::vector<size_t> & out_samples_size) {
struct llama_file f(filename, "rb");
if (f.size == 0) {
out_tokens.clear();
out_samples_begin.clear();
out_samples_size.clear();
printf("%s: warning: empty or not existing training data file '%s'\n",
__func__, filename);
return out_tokens.size();
}
// account for possible leading whitespace that will be added by tokenizer
// e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
const int n_max_tokens_overhead = 1;
std::vector<char> buf;
buf.resize(f.size);
f.read_raw(buf.data(), f.size);
std::vector<int> utf8_units;
std::vector<int> utf8_nunits;
utf8_units.resize(buf.size());
utf8_nunits.resize(buf.size());
mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size());
if (sample_start.size() == 0) {
// tokenize all data at once
out_tokens.resize(buf.size() + n_max_tokens_overhead);
int n_tokens = llama_tokenize(
llama_get_model(lctx),
buf.data(),
(int) buf.size(),
out_tokens.data(),
(int) out_tokens.size(),
false);
if (n_tokens < 0) {
out_tokens.resize(-n_tokens);
n_tokens = llama_tokenize(
llama_get_model(lctx),
buf.data(),
(int) buf.size(),
out_tokens.data(),
(int) out_tokens.size(),
false);
}
if (n_tokens >= 0) {
out_tokens.resize(n_tokens);
}
// generate sample starts at all token positions
out_samples_begin.clear();
out_samples_begin.push_back(0);
out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size()));
size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0;
for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) {
out_samples_begin.push_back(sample_begin);
out_samples_size.push_back(context_length);
}
} else {
// split data into samples and tokenize each sample
std::string data_str(buf.data(), buf.size());
out_samples_begin.clear();
out_samples_size.clear();
out_tokens.clear();
// find all positions of pattern sample_start
size_t sample_begin = data_str.find(sample_start, 0);
while (sample_begin != std::string::npos) {
out_samples_begin.push_back(sample_begin);
const size_t search_start = sample_begin + sample_start.size();
sample_begin = data_str.find(sample_start, search_start);
}
if (out_samples_begin.size() == 0) {
printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n",
__func__, sample_start.c_str());
out_samples_begin.push_back(0);
}
out_samples_size.resize(out_samples_begin.size(), 0);
std::vector<char> buf_sample;
std::vector<llama_token> tok_sample;
const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size());
size_t found_too_big_sample = 0;
size_t found_too_small_sample = 0;
size_t found_empty_sample = 0;
size_t found_min_sample_size = SIZE_MAX;
size_t found_max_sample_size = 0;
size_t max_token_text_size = 0;
int n_vocab = llama_n_vocab(llama_get_model(lctx));
for (llama_token token=0; token < n_vocab; ++token) {
max_token_text_size = std::max(
max_token_text_size,
strlen(llama_token_get_text(lctx, token)));
}
// upper bound of context byte length.
// strings with this byte length should always tokenize to at least context_length tokens.
size_t context_byte_len = max_token_text_size*context_length;
for (unsigned i=0; i<out_samples_begin.size(); ++i) {
// determine sample begin and end from pattern positions
size_t sample_begin = out_samples_begin[i] + sample_begin_offset;
size_t sample_end = overlapping_samples
? std::min(
data_str.size(),
sample_begin + context_byte_len)
: (i+1 < out_samples_begin.size()
? out_samples_begin[i+1]
: data_str.size());
if (sample_end < utf8_units.size() && utf8_units[sample_end] > 0) {
// sample end is in the middle of an utf8 character.
// advance sample_end to the begin of the next utf8 character.
sample_end += utf8_nunits[sample_end] - utf8_units[sample_end];
}
size_t sample_size = sample_end - sample_begin;
if (sample_size == 0) {
++found_empty_sample;
}
if (sample_size > 0) {
// llama_tokenize expects zero terminated string,
// copy sample into buffer and zero terminate it.
buf_sample.resize(sample_size);
memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size);
// printf("sample: '%s'\n", buf_sample.data());
// tokenize the sample
tok_sample.resize(buf_sample.size() + n_max_tokens_overhead);
int n_tokens = llama_tokenize(llama_get_model(lctx),
buf_sample.data(),
(int) buf_sample.size(),
tok_sample.data(),
(int) tok_sample.size(),
false);
if (n_tokens < 0) {
tok_sample.resize(-n_tokens);
n_tokens = llama_tokenize(llama_get_model(lctx),
buf_sample.data(),
(int) buf_sample.size(),
tok_sample.data(),
(int) tok_sample.size(),
false);
GGML_ASSERT(n_tokens >= 0);
}
GGML_ASSERT(n_tokens <= (int) tok_sample.size());
if ((size_t) n_tokens > context_length) {
++found_too_big_sample;
} else if ((size_t) n_tokens < context_length) {
++found_too_small_sample;
}
found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens);
found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens);
// write out tokens, start and size of sample
// overwrite the string start position with the token start position
out_samples_begin[i] = out_tokens.size();
out_samples_size[i] = (size_t) n_tokens;
out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens);
} else {
out_samples_begin[i] = out_tokens.size();
out_samples_size[i] = 0;
}
}
if (found_too_big_sample > 0) {
printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n",
__func__, found_too_big_sample, found_max_sample_size, context_length);
}
if (found_too_small_sample > 0) {
printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n",
__func__, found_too_small_sample, found_min_sample_size, context_length);
}
if (found_empty_sample) {
printf("%s: warning: found %zu empty samples.\n",
__func__, found_empty_sample);
}
}
printf("%s: total number of samples: %zu\n",
__func__, out_samples_begin.size());
GGML_ASSERT(out_samples_begin.size() == out_samples_size.size());
return out_tokens.size();
}
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) {
std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest);
return replace_str(filename, pattern_it, sit.c_str());
}
struct train_params_common get_default_train_params_common() {
struct train_params_common params;
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.gguf";
params.fn_checkpoint_out = "checkpoint-ITERATION.gguf";
params.pattern_fn_it = "ITERATION";
params.fn_latest = "LATEST";
params.print_usage = false;
params.save_every = 10;
params.seed = -1;
params.n_ctx = 128;
params.n_threads = 6;
params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.n_epochs = -1;
params.custom_n_ctx = false;
params.use_flash = true;
params.use_checkpointing = true;
params.sample_start = "";
params.include_sample_start = false;
params.escape = false;
params.overlapping_samples = false;
params.fill_with_next_samples = false;
params.separate_with_eos = false;
params.separate_with_bos = true;
params.sample_random_offsets = false;
params.force_reshuffle = false;
params.opt_past = 0;
params.opt_delta = 1e-5f;
params.opt_max_no_improvement = 0;
params.warmup = 100;
params.cos_decay_steps = 1000;
params.cos_decay_restart = 1.1f;
params.cos_decay_min = 0.1f;
params.enable_restart = false;
params.adam_n_iter = 256;
params.adam_alpha = 1e-3f;
params.adam_min_alpha = 0;
params.adam_decay = 1e-1f;
params.adam_decay_min_ndim = 2;
params.adam_beta1 = 0.9f;
params.adam_beta2 = 0.999f;
params.adam_gclip = 1.0f;
params.adam_eps_f = 0.0f;
return params;
}
void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) {
// fprintf(stderr, "usage: %s [options]\n", argv[0]);
// fprintf(stderr, "\n");
// fprintf(stderr, "options:\n");
// fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data);
fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it);
fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest);
fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every);
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n");
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation);
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");
fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : "");
fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : "");
fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : "");
fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n");
fprintf(stderr, " --no-flash Don't use flash attention \n");
fprintf(stderr, " --use-flash Use flash attention (default)\n");
fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n");
fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n");
fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup);
fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min);
fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : "");
fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : "");
fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past);
fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta);
fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement);
fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs);
fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha);
fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha);
fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim);
fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1);
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, "\n");
}
bool consume_common_train_arg(
int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param
) {
int& i = *idx;
std::string arg = argv[i];
const std::string arg_prefix = "--";
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "--train-data") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->fn_train_data = argv[i];
} else if (arg == "--checkpoint-in") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->fn_checkpoint_in = argv[i];
} else if (arg == "--checkpoint-out") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->fn_checkpoint_out = argv[i];
} else if (arg == "--pattern-fn-it") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->pattern_fn_it = argv[i];
} else if (arg == "--fn-latest") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->fn_latest = argv[i];
} else if (arg == "--save-every") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->save_every = std::stoi(argv[i]);
} else if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->seed = std::stoi(argv[i]);
} else if (arg == "-c" || arg == "--ctx") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->n_ctx = std::stoi(argv[i]);
params->custom_n_ctx = true;
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->n_threads = std::stoi(argv[i]);
} else if (arg == "-b" || arg == "--batch") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->n_batch = std::stoi(argv[i]);
} else if (arg == "--grad-acc") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->n_gradient_accumulation = std::max(1, std::stoi(argv[i]));
} else if (arg == "--sample-start") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->sample_start = std::string(argv[i]);
} else if (arg == "--escape") {
params->escape = true;
} else if (arg == "--include-sample-start") {
params->include_sample_start = true;
} else if (arg == "--overlapping-samples") {
params->overlapping_samples = true;
} else if (arg == "--fill-with-next-samples") {
params->fill_with_next_samples = true;
} else if (arg == "--separate-with-eos") {
params->separate_with_eos = true;
} else if (arg == "--separate-with-bos") {
params->separate_with_bos = true;
} else if (arg == "--no-separate-with-eos") {
params->separate_with_eos = false;
} else if (arg == "--no-separate-with-bos") {
params->separate_with_bos = false;
} else if (arg == "--sample-random-offsets") {
params->sample_random_offsets = true;
} else if (arg == "--force-reshuffle") {
params->force_reshuffle = true;
} else if (arg == "--no-flash") {
params->use_flash = false;
} else if (arg == "--use-flash") {
params->use_flash = true;
} else if (arg == "--no-checkpointing") {
params->use_checkpointing = false;
} else if (arg == "--use-checkpointing") {
params->use_checkpointing = true;
} else if (arg == "--warmup") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->warmup = std::stoi(argv[i]);
} else if (arg == "--cos-decay-steps") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->cos_decay_steps = std::stoi(argv[i]);
} else if (arg == "--cos-decay-restart") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->cos_decay_restart = std::stof(argv[i]);
} else if (arg == "--cos-decay-min") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->cos_decay_min = std::stof(argv[i]);
} else if (arg == "--enable-restart") {
params->enable_restart = true;
} else if (arg == "--disable-restart") {
params->enable_restart = false;
} else if (arg == "--opt-past") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->opt_past = std::stoi(argv[i]);
} else if (arg == "--opt-delta") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->opt_delta = std::stof(argv[i]);
} else if (arg == "--opt-max-no-improvement") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->opt_max_no_improvement = std::stoi(argv[i]);
} else if (arg == "--adam-epsf") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_eps_f = std::stof(argv[i]);
} else if (arg == "--epochs") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->n_epochs = std::stoi(argv[i]);
} else if (arg == "--adam-iter") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_n_iter = std::stoi(argv[i]);
} else if (arg == "--adam-alpha") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_alpha = std::stof(argv[i]);
} else if (arg == "--adam-min-alpha") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_min_alpha = std::stof(argv[i]);
} else if (arg == "--adam-decay") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_decay = std::stof(argv[i]);
} else if (arg == "--adam-decay-min-ndim") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_decay_min_ndim = std::stoi(argv[i]);
} else if (arg == "--adam-beta1") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_beta1 = std::stof(argv[i]);
} else if (arg == "--adam-beta2") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_beta2 = std::stof(argv[i]);
} else if (arg == "--adam-gclip") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;
} else {
return false;
}
return true;
}
void finish_processing_train_args(struct train_params_common * params) {
if (params->escape) {
process_escapes(params->sample_start);
}
}
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) {
struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata;
struct train_params_common * params = data->params;
struct train_state * train = data->train;
struct ggml_opt_context * opt = train->opt;
int n_batch = params->n_batch;
int n_ctx = params->n_ctx;
if (accum_step == 0) {
// time measurement
int64_t now = ggml_time_ms();
if (now > data->last_time && opt->iter > data->first_iter) {
double dt = (double) (now - data->last_time);
if (data->millis_per_iter == 0.0) {
data->millis_per_iter = dt;
} else {
const double gain = 0.7;
data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain;
}
}
double remaining_millis = 0.0;
if (data->millis_per_iter > 0.0) {
const int n_iter = params->adam_n_iter;
const int done_iter = opt->iter - data->first_iter;
const int remaining_iter = n_iter - done_iter;
remaining_millis = remaining_iter * data->millis_per_iter;
}
// file saving
const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every);
if (save_now) {
int new_iters = opt->iter - data->last_save_iter;
train->train_its += new_iters;
train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx;
if (data->save_cb) {
data->save_cb(data->save_data, train);
}
data->last_save_iter = opt->iter;
}
// exclude file saving from time measurement, by measuring last_time after saving
data->last_time = ggml_time_ms();
*sched = learning_schedule(
opt->iter,
params->warmup,
params->cos_decay_steps,
params->adam_alpha,
params->adam_min_alpha,
params->cos_decay_min,
params->cos_decay_restart,
params->enable_restart);
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
if (impr_plot > 0) impr_plot = 0;
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0;
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
*sched, opt->loss_after);
if (data->millis_per_iter > 0) {
printf(" dt=");
print_duration(data->millis_per_iter);
printf(" eta=");
print_duration(remaining_millis);
}
float improvement = opt->loss_before - opt->loss_after;
const float plot_scale = 10.0f;
int bar_len = (int)(1 + improvement*plot_scale + 0.5);
printf(" |");
for (int i=0; i<bar_len; ++i) {
printf("-");
}
printf(">");
printf("\n");
}
int64_t used_samples = get_example_targets_batch(
data->lctx,
data->tokens_input,
data->target_probs,
train->shuffle_next_sample,
data->shuffled_samples_offs,
data->shuffled_samples_begin,
data->shuffled_samples_size,
data->samples_count,
data->tokens_data,
data->tokens_size,
params->separate_with_eos,
params->separate_with_bos,
params->fill_with_next_samples,
params->sample_random_offsets);
train->train_samples += used_samples;
train->shuffle_next_sample += used_samples;
if (train->shuffle_next_sample >= train->shuffle_sample_count) {
++train->train_epochs;
printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs);
// note: we may have used some samples from the current shuffling more than once
train->shuffle_rng_state_current = train->shuffle_rng_state_next;
train->shuffle_rng_state_next = shuffle_samples(
train->shuffle_rng_state_current,
data->shuffled_samples_offs,
data->shuffled_samples_begin,
data->shuffled_samples_size,
data->samples_begin,
data->samples_size,
data->samples_count);
train->shuffle_next_sample = 0;
}
const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs);
if (last_epoch_reached) {
// allow optimization iteration at last epoch to be completed before canceling
if (data->iter_at_last_epoch < 0) {
data->iter_at_last_epoch = opt->iter;
} else if (opt->iter > data->iter_at_last_epoch) {
*cancel = true;
}
}
}
|