File size: 99,067 Bytes
69fb50e
f57d7c6
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
f57d7c6
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
 
69fb50e
 
f57d7c6
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
69fb50e
 
f57d7c6
 
 
 
69fb50e
 
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
f57d7c6
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
 
 
f57d7c6
 
69fb50e
 
f57d7c6
 
 
 
69fb50e
 
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
69fb50e
 
f57d7c6
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
69fb50e
 
f57d7c6
69fb50e
f57d7c6
 
69fb50e
 
f57d7c6
69fb50e
 
 
 
f57d7c6
 
 
69fb50e
f57d7c6
69fb50e
 
 
6ba25f7
69fb50e
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
69fb50e
 
 
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
 
69fb50e
 
f57d7c6
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
 
69fb50e
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
f57d7c6
 
 
69fb50e
 
f57d7c6
69fb50e
 
 
 
f57d7c6
 
 
69fb50e
 
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
 
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
69fb50e
 
 
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
 
 
 
 
69fb50e
 
f57d7c6
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
69fb50e
f57d7c6
 
69fb50e
f57d7c6
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
 
 
69fb50e
 
f57d7c6
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
69fb50e
 
f57d7c6
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
f57d7c6
 
 
 
 
 
69fb50e
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
1e081f1
 
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
 
f57d7c6
 
 
 
69fb50e
 
 
 
 
 
f57d7c6
 
69fb50e
 
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bf9b4
69fb50e
 
f57d7c6
69fb50e
 
f57d7c6
 
 
69fb50e
 
 
 
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
81bf9b4
69fb50e
 
81bf9b4
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
f57d7c6
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
dc53b3a
69fb50e
 
 
 
 
f57d7c6
 
 
 
 
 
69fb50e
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
f57d7c6
 
 
69fb50e
 
 
f57d7c6
 
 
 
69fb50e
 
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
 
 
69fb50e
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
69fb50e
 
 
 
 
 
 
f57d7c6
69fb50e
f57d7c6
 
 
 
 
69fb50e
 
 
f57d7c6
69fb50e
 
 
f57d7c6
69fb50e
f57d7c6
 
69fb50e
 
 
f57d7c6
 
69fb50e
 
 
 
 
 
 
f57d7c6
 
 
 
 
69fb50e
f57d7c6
69fb50e
 
 
f57d7c6
69fb50e
 
f57d7c6
 
69fb50e
 
 
 
f57d7c6
69fb50e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
#include "ggml.h"
#include "ggml-alloc.h"
#include "common.h"
#include "llama.h"
#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <ctime>
#include <random>
#include <stdexcept>
#include <algorithm>
#include <string>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct random_normal_distribution {
    std::mt19937 gen;
    std::normal_distribution<float> rd;
    float min;
    float max;
};

struct random_uniform_distribution {
    std::mt19937 gen;
    std::uniform_real_distribution<float> rd;
};

void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
    rnd->gen = std::mt19937(seed);
    rnd->rd = std::normal_distribution<float>{mean, std};
    rnd->min = min;
    rnd->max = max;
}

void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) {
    rnd->gen = std::mt19937(seed);
    rnd->rd = std::uniform_real_distribution<float>{min, max};
}

int clamp(const int v, const int min, const int max) {
    return ((v < min) ? (min) : (v > max) ? (max) : v);
}

float fclamp(const float v, const float min, const float max) {
    return ((v < min) ? (min) : (v > max) ? (max) : v);
}

float frand() {
    return (float)rand()/(float)RAND_MAX;
}

float frand_normal(struct random_normal_distribution * rnd) {
    return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
}

float frand_uniform(struct random_uniform_distribution * rnd) {
    return rnd->rd(rnd->gen);
}

struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
    float scale = 1.0f; // xavier
    switch (tensor->n_dims) {
        case 1:
            scale /= sqrtf(tensor->ne[0]);
            for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
                *dst = scale * frand_normal(rnd);
            }
            break;
        case 2:
            scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
            for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                    float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
                    *dst = scale * frand_normal(rnd);
                }
            }
            break;
        case 3:
            scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
            for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
                for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                    for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                        float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
                        *dst = scale * frand_normal(rnd);
                    }
                }
            }
            break;
        case 4:
            scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
            for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
                for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
                    for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                        for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                            float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
                            *dst = scale * frand_normal(rnd);
                        }
                    }
                }
            }
            break;
        default:
            assert(false);
    };
    return tensor;
}

struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
    switch (tensor->n_dims) {
        case 1:
            for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
                *dst = frand_uniform(rnd);
            }
            break;
        case 2:
            for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                    float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
                    *dst = frand_uniform(rnd);
                }
            }
            break;
        case 3:
            for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
                for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                    for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                        float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
                        *dst = frand_uniform(rnd);
                    }
                }
            }
            break;
        case 4:
            for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
                for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
                    for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
                        for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
                            float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
                            *dst = frand_uniform(rnd);
                        }
                    }
                }
            }
            break;
        default:
            assert(false);
    };
    return tensor;
}

struct my_llama_hparams {
    uint32_t n_vocab = 32000;
    uint32_t n_ctx   = 512;
    uint32_t n_embd  = 4096;
    uint32_t n_head  = 32;
    uint32_t n_layer = 32;
    uint32_t n_rot   = 64;
    uint32_t n_ff    = 11008;

    // float f_norm_eps     = 1e-5; // falcon
    float f_norm_rms_eps = 1e-5; // llama

    float rope_freq_base  = 10000.0f;
    float rope_freq_scale = 1.0f;
};

struct my_llama_layer {
    // normalization
    struct ggml_tensor * attention_norm;

    // attention
    struct ggml_tensor * wq;
    struct ggml_tensor * wk;
    struct ggml_tensor * wv;
    struct ggml_tensor * wo;

    // normalization
    struct ggml_tensor * ffn_norm;

    // ff
    struct ggml_tensor * w1;
    struct ggml_tensor * w2;
    struct ggml_tensor * w3;
};

struct my_llama_model {
    struct ggml_context * ctx = NULL;

    my_llama_hparams hparams;

    struct ggml_tensor * tok_embeddings;

    struct ggml_tensor * norm;
    struct ggml_tensor * output;

    std::vector<my_llama_layer> layers;

    uint32_t train_its = 0;
    uint32_t train_samples = 0;
    uint32_t train_tokens = 0;
};

// gguf constants
const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type";
const char * LLM_KV_OPTIMIZER_TYPE_ADAM  = "adam";
const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs";
const char * LLM_KV_OPTIMIZER_FILE_VERSION               = "optimizer.file_version";
const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT     = "optimizer.convergence_past_count";
const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT            = "optimizer.parameter_count";
const char * LLM_KV_OPTIMIZER_ITERATION_COUNT            = "optimizer.iteration_count";
const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED           = "optimizer.just_initialized";
const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS             = "optimizer.adam.best_loss";
const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS         = "optimizer.adam.previous_loss";
const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT  = "optimizer.adam.no_improvement_count";
const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count";
const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS            = "optimizer.lbfgs.best_loss";
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP     = "optimizer.lbfgs.line_search_step";
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J        = "optimizer.lbfgs.line_search_j";
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K        = "optimizer.lbfgs.line_search_k";
const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END      = "optimizer.lbfgs.line_search_end";
const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count";

const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS    = "optimizer.adam.first_moments";
const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS   = "optimizer.adam.second_moments";
const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values";

const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS  = "optimizer.lbfgs.current_parameters";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS   = "optimizer.lbfgs.current_gradients";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS  = "optimizer.lbfgs.previous_gradients";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION    = "optimizer.lbfgs.search_direction";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES    = "optimizer.lbfgs.past_loss_values";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA        = "optimizer.lbfgs.memory_alpha";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS           = "optimizer.lbfgs.memory_ys";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S            = "optimizer.lbfgs.memory_s";
const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y            = "optimizer.lbfgs.memory_y";

const char * LLM_KV_TRAINING_FILE_VERSION    = "training.file_version";
const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count";
const char * LLM_KV_TRAINING_SAMPLE_COUNT    = "training.sample_count";
const char * LLM_KV_TRAINING_TOKEN_COUNT     = "training.token_count";

// gguf constants (sync with gguf.py)

const char * LLM_KV_GENERAL_ARCHITECTURE        = "general.architecture";
const char * LLM_KV_GENERAL_FILE_TYPE           = "general.file_type";

const char * LLM_KV_CONTEXT_LENGTH              = "%s.context_length";
const char * LLM_KV_EMBEDDING_LENGTH            = "%s.embedding_length";
const char * LLM_KV_BLOCK_COUNT                 = "%s.block_count";
const char * LLM_KV_FEED_FORWARD_LENGTH         = "%s.feed_forward_length";
const char * LLM_KV_ATTENTION_HEAD_COUNT        = "%s.attention.head_count";
const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
const char * LLM_KV_ROPE_DIMENSION_COUNT        = "%s.rope.dimension_count";
const char * LLM_KV_ROPE_FREQ_BASE              = "%s.rope.freq_base"; // TODO load in llama.cpp
const char * LLM_KV_ROPE_SCALE_LINEAR           = "%s.rope.scale_linear";

const char * LLM_KV_TOKENIZER_MODEL             = "tokenizer.ggml.model";
const char * LLM_KV_TOKENIZER_LIST              = "tokenizer.ggml.tokens";
const char * LLM_KV_TOKENIZER_TOKEN_TYPE        = "tokenizer.ggml.token_type";
const char * LLM_KV_TOKENIZER_SCORES            = "tokenizer.ggml.scores";
const char * LLM_KV_TOKENIZER_MERGES            = "tokenizer.ggml.merges";
const char * LLM_KV_TOKENIZER_BOS_ID            = "tokenizer.ggml.bos_token_id";
const char * LLM_KV_TOKENIZER_EOS_ID            = "tokenizer.ggml.eos_token_id";
const char * LLM_KV_TOKENIZER_UNK_ID            = "tokenizer.ggml.unknown_token_id";
const char * LLM_KV_TOKENIZER_SEP_ID            = "tokenizer.ggml.seperator_token_id";
const char * LLM_KV_TOKENIZER_PAD_ID            = "tokenizer.ggml.padding_token_id";

const char * LLM_TENSOR_TOKEN_EMBD    = "token_embd";
const char * LLM_TENSOR_OUTPUT_NORM   = "output_norm";
const char * LLM_TENSOR_OUTPUT        = "output";
const char * LLM_TENSOR_ATTN_NORM     = "blk.%d.attn_norm";
const char * LLM_TENSOR_ATTN_Q        = "blk.%d.attn_q";
const char * LLM_TENSOR_ATTN_K        = "blk.%d.attn_k";
const char * LLM_TENSOR_ATTN_V        = "blk.%d.attn_v";
const char * LLM_TENSOR_ATTN_OUT      = "blk.%d.attn_output";
const char * LLM_TENSOR_FFN_NORM      = "blk.%d.ffn_norm";
const char * LLM_TENSOR_FFN_GATE      = "blk.%d.ffn_gate";
const char * LLM_TENSOR_FFN_DOWN      = "blk.%d.ffn_down";
const char * LLM_TENSOR_FFN_UP        = "blk.%d.ffn_up";

void print_params(struct my_llama_hparams * params) {
    printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
    printf("%s: n_ctx:   %d\n", __func__, params->n_ctx);
    printf("%s: n_embd:  %d\n", __func__, params->n_embd);
    printf("%s: n_head:  %d\n", __func__, params->n_head);
    printf("%s: n_ff:    %d\n", __func__, params->n_ff);
    printf("%s: n_layer: %d\n", __func__, params->n_layer);
    printf("%s: n_rot:   %d\n", __func__, params->n_rot);
}

void init_model(struct my_llama_model * model) {
    const auto & hparams = model->hparams;

    const uint32_t n_embd  = hparams.n_embd;
    const uint32_t n_layer = hparams.n_layer;
    const uint32_t n_vocab = hparams.n_vocab;
    const uint32_t n_ff    = hparams.n_ff;

    struct ggml_context * ctx = model->ctx;

    model->train_its = 0;
    model->train_samples = 0;
    model->train_tokens = 0;

    std::vector<char> tn_buf;
    tn_buf.resize(GGML_MAX_NAME);
    auto tn = [&tn_buf](const char * key) -> const char * {
        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
        return tn_buf.data();
    };
    auto tni = [&tn_buf](const char * key, int bid) -> const char * {
        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
        std::string s = tn_buf.data();
        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
        return tn_buf.data();
    };

    model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
    model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
    model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);

    ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
    ggml_set_name(model->norm,           tn(LLM_TENSOR_OUTPUT_NORM));
    ggml_set_name(model->output,         tn(LLM_TENSOR_OUTPUT));

    model->layers.resize(n_layer);
    for (uint32_t i = 0; i < n_layer; ++i) {
        auto & layer = model->layers[i];

        layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
        layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
        layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
        layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);

        layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

        layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
        layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);
        layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);

        ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));

        ggml_set_name(layer.wq,             tni(LLM_TENSOR_ATTN_Q, i));
        ggml_set_name(layer.wk,             tni(LLM_TENSOR_ATTN_K, i));
        ggml_set_name(layer.wv,             tni(LLM_TENSOR_ATTN_V, i));
        ggml_set_name(layer.wo,             tni(LLM_TENSOR_ATTN_OUT, i));

        ggml_set_name(layer.ffn_norm,       tni(LLM_TENSOR_FFN_NORM, i));

        ggml_set_name(layer.w1,             tni(LLM_TENSOR_FFN_GATE, i));
        ggml_set_name(layer.w2,             tni(LLM_TENSOR_FFN_DOWN, i));
        ggml_set_name(layer.w3,             tni(LLM_TENSOR_FFN_UP, i));
    }
}

void set_param_model(struct my_llama_model * model) {
    const auto& hparams = model->hparams;

    const uint32_t n_layer = hparams.n_layer;

    struct ggml_context* ctx = model->ctx;

    ggml_set_param(ctx, model->tok_embeddings);
    ggml_set_param(ctx, model->norm);
    ggml_set_param(ctx, model->output);

    for (uint32_t i = 0; i < n_layer; ++i) {
        auto & layer = model->layers[i];

        ggml_set_param(ctx, layer.attention_norm);
        ggml_set_param(ctx, layer.wq);
        ggml_set_param(ctx, layer.wk);
        ggml_set_param(ctx, layer.wv);
        ggml_set_param(ctx, layer.wo);
        ggml_set_param(ctx, layer.ffn_norm);
        ggml_set_param(ctx, layer.w1);
        ggml_set_param(ctx, layer.w2);
        ggml_set_param(ctx, layer.w3);
    }
}

void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
    const auto & hparams = model->hparams;

    const uint32_t n_layer = hparams.n_layer;

    struct random_normal_distribution rnd;
    init_random_normal_distribution(&rnd, seed, mean, std, min, max);

    randomize_tensor_normal(model->tok_embeddings, &rnd);
    randomize_tensor_normal(model->norm,           &rnd);
    randomize_tensor_normal(model->output,         &rnd);

    for (uint32_t i = 0; i < n_layer; ++i) {
        auto & layer = model->layers[i];
        randomize_tensor_normal(layer.attention_norm, &rnd);

        randomize_tensor_normal(layer.wq, &rnd);
        randomize_tensor_normal(layer.wk, &rnd);
        randomize_tensor_normal(layer.wv, &rnd);
        randomize_tensor_normal(layer.wo, &rnd);

        randomize_tensor_normal(layer.ffn_norm, &rnd);

        randomize_tensor_normal(layer.w1, &rnd);
        randomize_tensor_normal(layer.w2, &rnd);
        randomize_tensor_normal(layer.w3, &rnd);
    }
}

void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
    GGML_ASSERT(tensor->n_dims == 1);
    GGML_ASSERT(tensor->ne[0] == ne0);
}

void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
    GGML_ASSERT(tensor->n_dims == 2);
    GGML_ASSERT(tensor->ne[0] == ne0);
    GGML_ASSERT(tensor->ne[1] == ne1);
}

void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
    GGML_ASSERT(tensor->n_dims == 3);
    GGML_ASSERT(tensor->ne[0] == ne0);
    GGML_ASSERT(tensor->ne[1] == ne1);
    GGML_ASSERT(tensor->ne[2] == ne2);
}

void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
    GGML_ASSERT(tensor->n_dims == 4);
    GGML_ASSERT(tensor->ne[0] == ne0);
    GGML_ASSERT(tensor->ne[1] == ne1);
    GGML_ASSERT(tensor->ne[2] == ne2);
    GGML_ASSERT(tensor->ne[3] == ne3);
}

static size_t hash(void * p) {
    return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}

static size_t hash_find(void * hash_table[], void * p) {
    size_t h = hash(p);

    // linear probing
    size_t i = h;
    while (hash_table[i] != NULL && hash_table[i] != p) {
        i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
        if (i == h) {
            // visited all hash table entries -> not found
            return GGML_GRAPH_HASHTABLE_SIZE;
        }
    }
    return i;
}

static bool hash_insert(void * hash_table[], void * p) {
    //size_t h = hash(p);
    size_t i = hash_find(hash_table, p);

    GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full

    if (hash_table[i] == p) {
        return true;
    }

    // insert
    GGML_ASSERT(hash_table[i] == NULL);
    hash_table[i] = p;
    return false;
}

static bool hash_contains(void * hash_table[], void * p) {
    size_t i = hash_find(hash_table, p);
    return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
}

struct hash_map {
    void * keys[GGML_GRAPH_HASHTABLE_SIZE];
    void * vals[GGML_GRAPH_HASHTABLE_SIZE];
};
//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map);

struct hash_map * new_hash_map() {
    struct hash_map * result = new struct hash_map;
    for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
        result->keys[i] = NULL;
        result->vals[i] = NULL;
    }
    return result;
};

void free_hash_map(struct hash_map * map) {
    delete map;
}

static bool ggml_is_view(struct ggml_tensor * t) {
    return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
           t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
}

static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
    switch (t->op) {
        case GGML_OP_PERMUTE:
        case GGML_OP_RESHAPE:
        case GGML_OP_TRANSPOSE:
        case GGML_OP_VIEW:
            return t->src[0];
        case GGML_OP_CPY:
            return t->src[1];
        default:
            return NULL;
    }
}

static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
    struct ggml_tensor * parent = t;
    do {
        parent = get_view_parent(parent);
    } while (ggml_is_view(parent));
    return parent;
}

struct ggml_tensor * ggml_recompute_graph_node(
        struct ggml_context * ctx,
        struct ggml_cgraph  * graph,
        struct hash_map     * replacements,
        struct ggml_tensor  * node) {

    if (node == NULL) {
        return NULL;
    }

    if (node->is_param) {
        return node;
    }

    if (!hash_contains(graph->visited_hash_table, node)) {
        return node;
    }

    int count_children = 0;
    for (int k = 0; k < GGML_MAX_SRC; ++k) {
        if (node->src[k]) {
            ++count_children;
        }
    }

    if (count_children == 0) {
        return node;
    }

    size_t i = hash_find(replacements->keys, node);
    GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
    if (replacements->keys[i] == node) {
        return (struct ggml_tensor *) replacements->vals[i];
    }

    struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);

    // insert clone into replacements
    GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
    replacements->keys[i] = node;
    replacements->vals[i] = clone;

    clone->op       = node->op;
    clone->grad     = node->grad;
    clone->is_param = node->is_param;
    clone->extra    = node->extra;
    for (int k = 0; k < GGML_MAX_DIMS; ++k) {
        clone->nb[k] = node->nb[k];
    }
    for (int k = 0; k < GGML_MAX_SRC; ++k) {
        clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
    }
    if (ggml_is_view(clone)) {
        struct ggml_tensor * source = get_view_source(clone);
        GGML_ASSERT(source != NULL);
        clone->data = source->data;
    }

    GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
    GGML_ASSERT(sizeof(node->name)      == GGML_MAX_NAME);
    memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
    ggml_format_name(clone, "%s (clone)", ggml_get_name(node));

    return clone;
};

void ggml_build_backward_gradient_checkpointing(
        struct ggml_context   * ctx,
        struct ggml_cgraph    * gf,
        struct ggml_cgraph    * gb,
        struct ggml_cgraph    * gb_tmp,
        struct ggml_tensor  * * checkpoints,
        int                     n_checkpoints) {
    *gb_tmp = *gf;
    ggml_build_backward_expand(ctx, gf, gb_tmp, true);

    if (n_checkpoints <= 0) {
        *gb = *gb_tmp;
        return;
    }

    struct hash_map * replacements = new_hash_map();

    // insert checkpoints in replacements
    for (int i = 0; i < n_checkpoints; ++i) {
        size_t k = hash_find(replacements->keys, checkpoints[i]);
        GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
        GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
        replacements->keys[k] = checkpoints[i];
        replacements->vals[k] = checkpoints[i];
    }

    *gb = *gf;
    // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
    // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
    // by recomputing them from checkpoints
    for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
        struct ggml_tensor * node = gb_tmp->nodes[i];
        for (int k = 0; k < GGML_MAX_SRC; ++k) {
            // insert new tensors recomputing src, reusing already made replacements,
            // remember replacements: remember new tensors with mapping from corresponding gf nodes
            // recurse for input tensors,
            // unless (i.e. terminating when) input tensors are checkpoints
            node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
        }
        // insert rewritten backward node with replacements made into resulting backward graph gb
        ggml_build_forward_expand(gb, node);
    }

    free_hash_map(replacements);
}

struct ggml_tensor * llama_build_train_graphs(
        struct my_llama_model * model,
        struct ggml_allocr    * alloc,
        struct ggml_context   * ctx,
        struct ggml_cgraph    * gf,
        struct ggml_cgraph    * gb,
        struct ggml_cgraph    * gb_tmp,
        struct ggml_tensor  * * logits,
        struct ggml_tensor    * tokens_input,
        struct ggml_tensor    * targets,
        const  int              n_tokens,
        const  int              n_batch,
        const  bool             enable_flash_attn,
        const  bool             enable_checkpointing) {

    ggml_set_scratch(ctx, { 0, 0, nullptr, });
    const int n_past = 0;
    const int N = n_tokens;
    const auto & hparams = model->hparams;
    const int n_ctx      = hparams.n_ctx;
    const int n_vocab    = hparams.n_vocab;
    const int n_embd     = hparams.n_embd;
    const int n_layer    = hparams.n_layer;
    const int n_head     = hparams.n_head;
    const int n_rot      = hparams.n_rot;
    const int n_ff       = hparams.n_ff;
    const float f_norm_rms_eps  = hparams.f_norm_rms_eps;
    const float rope_freq_base  = hparams.rope_freq_base;
    const float rope_freq_scale = hparams.rope_freq_scale;

    auto set_name = [](struct ggml_tensor * t, const char * n) {
        ggml_set_name(t, n);
        if (t->grad) {
            ggml_format_name(t->grad, "%s->grad", n);
        }
    };

    // rope has so much parameters that we make a custom function for it
    auto rope = [ctx, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
                (struct ggml_tensor * t) -> struct ggml_tensor * {
        // not capturing these, to silcence warnings
        const int n_past    = 0;
        const int rope_mode = 0;

        return ggml_rope_custom(ctx,
            t, n_past, n_rot, rope_mode, n_ctx,
            rope_freq_base, rope_freq_scale);
    };

    set_name(tokens_input, "tokens_input");
    set_name(targets,      "targets");

    GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
    struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch);  set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
    struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);

    struct ggml_tensor * cur = t01;

    std::vector<struct ggml_tensor *> checkpoints;
    checkpoints.push_back(tokens_input);
    checkpoints.push_back(targets);
    checkpoints.push_back(t00);
    checkpoints.push_back(t01);

    struct ggml_tensor * kv_scale;
    if (!enable_flash_attn) {
        kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
    }

    for (int il = 0; il < n_layer; ++il) {
        struct my_llama_layer & layer = model->layers[il];
        struct ggml_tensor * t02 = ggml_rms_norm     (ctx, cur, f_norm_rms_eps);                    set_name(t02, "t02");     assert_shape_2d(t02, n_embd, N*n_batch);
        struct ggml_tensor * t03 = ggml_repeat       (ctx, layer.attention_norm, t02);              set_name(t03, "t03");     assert_shape_2d(t03, n_embd, N*n_batch);
        struct ggml_tensor * t04 = ggml_mul          (ctx, t03, t02);                               set_name(t04, "t04");     assert_shape_2d(t04, n_embd, N*n_batch);
        struct ggml_tensor * t05 = ggml_mul_mat      (ctx, layer.wq, t04);                          set_name(t05, "t05");     assert_shape_2d(t05, n_embd, N*n_batch);
        struct ggml_tensor * t06 = ggml_reshape_4d   (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06");     assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t07 = rope              (t06);                                         set_name(t07, "t07");     assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t08 = ggml_mul_mat      (ctx, layer.wk, t04);                          set_name(t08, "t08");     assert_shape_2d(t08, n_embd, N*n_batch);
        struct ggml_tensor * t09 = ggml_reshape_4d   (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09");     assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t10 = rope              (t09);                                         set_name(t10, "t10");     assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t11 = ggml_mul_mat      (ctx, t04, layer.wv);                          set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd);
        struct ggml_tensor * t12 = ggml_reshape_4d   (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12");     assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
        struct ggml_tensor * t13 = ggml_permute      (ctx, t07, 0, 2, 1, 3);                        set_name(t13, "t13");     assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
        struct ggml_tensor * t14 = ggml_permute      (ctx, t10, 0, 2, 1, 3);                        set_name(t14, "t14");     assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
        struct ggml_tensor * t15 = ggml_permute      (ctx, t12, 0, 3, 1, 2);                        set_name(t15, "t15");     assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
        struct ggml_tensor * t16;
        if (enable_flash_attn) {
            t16 = ggml_flash_attn(ctx, t13, t14, t15, true);                                        set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
        } else {
            struct ggml_tensor * t16_0 = ggml_mul_mat              (ctx, t14, t13);                 set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
            struct ggml_tensor * t16_1 = ggml_scale_inplace        (ctx, t16_0, kv_scale);          set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
            struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past);            set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
            struct ggml_tensor * t16_3 = ggml_soft_max_inplace     (ctx, t16_2);                    set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
            t16 = ggml_mul_mat(ctx, t15, t16_3);                                                    set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
        }
        struct ggml_tensor * t17 = ggml_permute      (ctx, t16, 0, 2, 1, 3);                        set_name(t17, "t17");     assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t18 = ggml_cont         (ctx, t17);                                    set_name(t18, "t18");     assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
        struct ggml_tensor * t19 = ggml_reshape_2d   (ctx, t18, n_embd, N*n_batch);                 set_name(t19, "t19");     assert_shape_2d(t19, n_embd, N*n_batch);
        struct ggml_tensor * t20 = ggml_mul_mat      (ctx, layer.wo, t19);                          set_name(t20, "t20");     assert_shape_2d(t20, n_embd, N*n_batch);
        struct ggml_tensor * t21 = ggml_add          (ctx, t20, cur);                               set_name(t21, "t21");     assert_shape_2d(t21, n_embd, N*n_batch);
        struct ggml_tensor * t22 = ggml_rms_norm     (ctx, t21, f_norm_rms_eps);                    set_name(t22, "t22");     assert_shape_2d(t22, n_embd, N*n_batch);
        struct ggml_tensor * t23 = ggml_repeat       (ctx, layer.ffn_norm, t22);                    set_name(t23, "t23");     assert_shape_2d(t23, n_embd, N*n_batch);
        struct ggml_tensor * t24 = ggml_mul          (ctx, t23, t22);                               set_name(t24, "t24");     assert_shape_2d(t24, n_embd, N*n_batch);
        struct ggml_tensor * t25 = ggml_mul_mat      (ctx, layer.w3, t24);                          set_name(t25, "t25");     assert_shape_2d(t25, n_ff, N*n_batch);
        struct ggml_tensor * t26 = ggml_mul_mat      (ctx, layer.w1, t24);                          set_name(t26, "t26");     assert_shape_2d(t26, n_ff, N*n_batch);
        struct ggml_tensor * t27 = ggml_silu         (ctx, t26);                                    set_name(t27, "t27");     assert_shape_2d(t27, n_ff, N*n_batch);
        struct ggml_tensor * t28 = ggml_mul          (ctx, t27, t25);                               set_name(t28, "t28");     assert_shape_2d(t28, n_ff, N*n_batch);
        struct ggml_tensor * t29 = ggml_mul_mat      (ctx, layer.w2, t28);                          set_name(t29, "t29");     assert_shape_2d(t29, n_embd, N*n_batch);
        struct ggml_tensor * t30 = ggml_add          (ctx, t29, t21);                               set_name(t30, "t30");     assert_shape_2d(t30, n_embd, N*n_batch);
        cur = t30;
        checkpoints.push_back(cur);
    }
    struct ggml_tensor * t31   = ggml_rms_norm          (ctx, cur, f_norm_rms_eps);                 set_name(t31, "t31");     assert_shape_2d(t31, n_embd, N*n_batch);
    struct ggml_tensor * t32   = ggml_repeat            (ctx, model->norm, t31);                    set_name(t32, "t32");     assert_shape_2d(t32, n_embd, N*n_batch);
    struct ggml_tensor * t33   = ggml_mul               (ctx, t32, t31);                            set_name(t33, "t33");     assert_shape_2d(t33, n_embd, N*n_batch);
    struct ggml_tensor * t34   = ggml_mul_mat           (ctx, model->output, t33);                  set_name(t34, "t34");     assert_shape_2d(t34, n_vocab, N*n_batch);
    struct ggml_tensor * t35   = ggml_reshape_3d        (ctx, t34, n_vocab, N, n_batch);            set_name(t35, "t35");     assert_shape_3d(t35, n_vocab, N, n_batch);
    struct ggml_tensor * t36   = ggml_cross_entropy_loss(ctx, t35, targets);                        set_name(t36, "t36");     assert_shape_1d(t36, 1);

    checkpoints.push_back(t31);
    checkpoints.push_back(t32);
    checkpoints.push_back(t33);
    checkpoints.push_back(t34);
    checkpoints.push_back(t35);
    checkpoints.push_back(t36);

    ggml_build_forward_expand(gf, t36);

    if (enable_checkpointing) {
        ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
    } else {
        *gb = *gf;
        ggml_build_backward_expand(ctx, gf, gb, true);
    }

    if (alloc) {
        // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
        int n_leafs_before = gb->n_leafs;
        int n_nodes_before = gb->n_nodes;
        struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
        // output tensors
        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
        // input gradient
        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
        GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad));
        ggml_allocr_alloc(alloc, t36->grad);
        // gradient tensors (will be set to zero by ggml_graph_reset)
        // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632
        for (int i = 0; i < gf->n_nodes; ++i) {
            if (!gf->grads[i]) continue;
            if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) {
                ggml_allocr_alloc(alloc, gf->grads[i]);
            }
            ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one));
        }
        // allocating checkpoints in one block to reduce memory fragmentation
        // note: they will be freed in reverse order
        for (int i = 0; i < (int) checkpoints.size(); ++i) {
            if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) {
                ggml_allocr_alloc(alloc, checkpoints[i]);
            }
        }

        //int n_leafs_after = gb->n_leafs;
        //int n_nodes_after = gb->n_nodes;

        ggml_allocr_alloc_graph(alloc, gb);

        // remove the additional nodes and leafs
        for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
            gb->leafs[i] = NULL;
        }
        for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
            gb->nodes[i] = NULL;
        }
        gb->n_leafs = n_leafs_before;
        gb->n_nodes = n_nodes_before;
    }

    *logits = t35;
    return t36;
}

void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) {
    float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
    *ptr = value;
}

void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) {
    float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    *ptr = value;
}

void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) {
    int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    *ptr = value;
}

float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
    float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    return *ptr;
}

int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
    int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
    return *ptr;
}

void print_row(struct ggml_tensor * probs, int i) {
    for (int k = 0; k < probs->ne[0]; ++k) {
        float p = get_f32_2d(probs, k, i);
        printf(" %.2f", p);
    }
    printf("\n");
}

void print_matrix(struct ggml_tensor * probs) {
    assert(probs->n_dims == 2);
    for (int i = 0; i < probs->ne[1]; ++i) {
        for (int k = 0; k < probs->ne[0]; ++k) {
            float p = get_f32_2d(probs, k, i);
            printf(" %.2f", p);
        }
        printf("\n");
    }
}

void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
    int n_tokens = tokens_input->ne[0];
    int n_vocab  = target_logits->ne[0];

    size_t sample = train_samples[example_id % n_train_samples];
    GGML_ASSERT(sample+n_tokens-1 < n_train_data);

    ggml_set_f32(target_logits, -1.0f/n_vocab);
    ggml_set_f32(target_probs, 0.0f);
    ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
    for (int i=1; i<n_tokens+1; ++i) {
        int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
        set_f32_2d(target_logits, token, i-1, +1.0f);
        set_f32_2d(target_probs,  token, i-1, +1.0f);
        if (i<n_tokens) {
            ggml_set_i32_1d(tokens_input, i, token);
        }
    }
}

void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
    GGML_ASSERT(tokens_input->n_dims  == 2);
    GGML_ASSERT(target_logits->n_dims == 3);
    GGML_ASSERT(target_probs->n_dims  == 3);
    int n_vocab  = target_logits->ne[0];
    int n_tokens = tokens_input->ne[0];
    int n_batch  = tokens_input->ne[1];
    GGML_ASSERT(n_tokens == target_logits->ne[1]);
    GGML_ASSERT(n_batch  == target_logits->ne[2]);
    GGML_ASSERT(n_vocab  == target_probs->ne[0]);
    GGML_ASSERT(n_tokens == target_probs->ne[1]);
    GGML_ASSERT(n_batch  == target_probs->ne[2]);

    ggml_set_f32(target_logits, -1.0f/n_vocab);
    ggml_set_f32(target_probs, 0.0f);
    // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
    for (int k=0; k<n_batch; ++k) {
        // printf("%s: batch %d\n", __func__, k);
        size_t sample_idx = (example_id*n_batch + k) % n_train_samples;
        size_t sample = train_samples[sample_idx];
        // printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
        GGML_ASSERT(sample+n_tokens-1 < n_train_data);

        set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
        for (int i=1; i<n_tokens+1; ++i) {
            int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
            set_f32_3d(target_logits, token, i-1, k, +1.0f);
            set_f32_3d(target_probs,  token, i-1, k, +1.0f);
            if (i<n_tokens) {
                set_i32_2d(tokens_input, i, k, token);
            }
        }
    }
}

int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
    FILE * fp = std::fopen(filename, "rb");
    if (fp == NULL) {
        return 0;
    }

#ifdef _WIN32
    GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0);
#else
    GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0);
#endif

    size_t size = 0;
#ifdef _WIN32
    __int64 ret = _ftelli64(fp);
    size = ret;
#else
    long ret = std::ftell(fp);
    size = ret;
#endif

#ifdef _WIN32
    GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0);
#else
    GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0);
#endif

    std::vector<char> buf;
    buf.resize(size+1);
    out.resize(size+1);

    if (std::fread(buf.data(), size, 1, fp) != 1) {
        die("unexpectedly reached end of file");
    }
    if (ferror(fp)) {
        die_fmt("fread failed: %s", strerror(errno));
    }

    buf[size] = '\0';

    int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
    if (n_tokens < 0) {
        out.resize(-n_tokens);
        n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
    }
    GGML_ASSERT(n_tokens >= 0);
    out.resize(n_tokens);

    bool verify = false;
    if (verify) {
        const char * in  = buf.data();
        const char * end = buf.data() + buf.size();
        for (int i = 0; i < (int) out.size(); ++i) {
            std::string s = llama_token_to_piece(lctx, out[i]);
            int len = s.length();
            if (in >= end) {
                printf("%s: unexpected end of original text.\n", __func__);
                break;
            }
            const bool matches = (strncmp(in, s.c_str(), len) == 0);
            if (matches) {
                in += len;
            } else {
                printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
            }
        }
    }

    return n_tokens;
}

void shuffle_ints(int * begin, int * end) {
    if (end <= begin) return;
    int max=begin[0];
    for (int i=1; i<end-begin; ++i) {
        if (begin[i] > max) {
            max = begin[i];
        }
    }
    std::vector<float> vals;
    vals.resize(max+1);
    for (int i=0; i<max+1; ++i) {
       vals[i] = frand();
    }
    std::sort(begin, end, [&vals](int a, int b){
       return vals.at(a) < vals.at(b);
    });
}

#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
    const std::string skey(key); \
    const int kid = gguf_find_key(ctx, skey.c_str()); \
    if (kid >= 0) { \
        enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
        if (ktype != (type)) { \
            die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
        } \
        (dst) = func(ctx, kid); \
    } else if (req) { \
        die_fmt("key not found in model: %s", skey.c_str()); \
    } \
}


bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) {
    GGML_ASSERT(a != NULL);
    GGML_ASSERT(b != NULL);
    GGML_ASSERT(a->type == b->type);
    GGML_ASSERT(ggml_are_same_shape(a, b));
    GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b));

    return true;
}

void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) {
    if (dst == NULL) {
        return;
    }
    struct ggml_tensor * t  = ggml_get_tensor(ctx, name);
    GGML_ASSERT(are_same_layout(dst, t));
    memcpy(dst->data, t->data, ggml_nbytes(t));

    if (strlen(ggml_get_name(dst)) == 0) {
        ggml_set_name(dst, name);
    }
}

void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) {
    // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read

    uint32_t file_version;
    GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION);
    GGML_ASSERT(file_version == 0);

    GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT);
    GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT);
    GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED);

    uint64_t nx;
    GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT);
    opt->nx = (size_t) nx;

    // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know

    std::string opt_type;
    GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
    if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
        opt->params.type = GGML_OPT_ADAM;

        GGUF_GET_KEY(fctx, opt->adam.fx_best,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
        GGUF_GET_KEY(fctx, opt->adam.fx_prev,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
        GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT);

        GGML_ASSERT(opt->ctx != NULL);
        ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);

        read_tensor_by_name(opt->adam.m,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
        read_tensor_by_name(opt->adam.v,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
        read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
    } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
        opt->params.type = GGML_OPT_LBFGS;

        GGUF_GET_KEY(fctx, opt->params.lbfgs.m,         gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
        GGUF_GET_KEY(fctx, opt->lbfgs.fx_best,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
        GGUF_GET_KEY(fctx, opt->lbfgs.step,             gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP);
        GGUF_GET_KEY(fctx, opt->lbfgs.j,                gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J);
        GGUF_GET_KEY(fctx, opt->lbfgs.k,                gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K);
        GGUF_GET_KEY(fctx, opt->lbfgs.end,              gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END);
        GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT);

        GGML_ASSERT(opt->ctx != NULL);
        ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);

        read_tensor_by_name(opt->lbfgs.x,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
        read_tensor_by_name(opt->lbfgs.xp,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
        read_tensor_by_name(opt->lbfgs.g,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
        read_tensor_by_name(opt->lbfgs.gp,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
        read_tensor_by_name(opt->lbfgs.d,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
        read_tensor_by_name(opt->lbfgs.pf,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
        read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
        read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
        read_tensor_by_name(opt->lbfgs.lms,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
        read_tensor_by_name(opt->lbfgs.lmy,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
    } else {
        die("unknown optimizer type");
    }
}

void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) {
    gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0);
    gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past);
    gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx);
    gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter);
    gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);

    switch (opt->params.type) {
        case GGML_OPT_ADAM:
            {
                gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
                gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS,            opt->adam.fx_best);
                gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS,        opt->adam.fx_prev);
                gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement);

                ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
                ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
                if (opt->adam.pf) {
                    ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
                }

                gguf_add_tensor(fctx, opt->adam.m);
                gguf_add_tensor(fctx, opt->adam.v);
                if (opt->adam.pf) {
                    gguf_add_tensor(fctx, opt->adam.pf);
                }
            } break;
        case GGML_OPT_LBFGS:
            {
                gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
                gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
                gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS,            opt->lbfgs.fx_best);
                gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP,     opt->lbfgs.step);
                gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J,        opt->lbfgs.j);
                gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K,        opt->lbfgs.k);
                gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END,      opt->lbfgs.end);
                gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement);

                ggml_set_name(opt->lbfgs.x,    LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
                ggml_set_name(opt->lbfgs.xp,   LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
                ggml_set_name(opt->lbfgs.g,    LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
                ggml_set_name(opt->lbfgs.gp,   LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
                ggml_set_name(opt->lbfgs.d,    LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
                if (opt->lbfgs.pf) {
                    ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
                }
                ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
                ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
                ggml_set_name(opt->lbfgs.lms,  LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
                ggml_set_name(opt->lbfgs.lmy,  LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);

                gguf_add_tensor(fctx, opt->lbfgs.x);
                gguf_add_tensor(fctx, opt->lbfgs.xp);
                gguf_add_tensor(fctx, opt->lbfgs.g);
                gguf_add_tensor(fctx, opt->lbfgs.gp);
                gguf_add_tensor(fctx, opt->lbfgs.d);
                if (opt->lbfgs.pf) {
                    gguf_add_tensor(fctx, opt->lbfgs.pf);
                }
                gguf_add_tensor(fctx, opt->lbfgs.lmal);
                gguf_add_tensor(fctx, opt->lbfgs.lmys);
                gguf_add_tensor(fctx, opt->lbfgs.lms);
                gguf_add_tensor(fctx, opt->lbfgs.lmy);
            } break;
    }
}

void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
    // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
    std::string arch;

    std::vector<char> keybuf;
    keybuf.resize(512);
    auto kv = [&arch, &keybuf](const char * key) -> const char * {
        snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
        return keybuf.data();
    };

    std::vector<char> tn_buf;
    tn_buf.resize(GGML_MAX_NAME);
    auto tn = [&tn_buf](const char * key) -> const char * {
        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
        return tn_buf.data();
    };
    auto tni = [&tn_buf](const char * key, int bid) -> const char * {
        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
        std::string s = tn_buf.data();
        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
        return tn_buf.data();
    };

    GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
    GGML_ASSERT(arch == "llama");

    uint32_t ftype_u;
    GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
    GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);

    // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
    GGUF_GET_KEY(fctx, model->hparams.n_ctx,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));

    GGUF_GET_KEY(fctx, model->hparams.n_embd,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
    GGUF_GET_KEY(fctx, model->hparams.n_ff,    gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
    GGUF_GET_KEY(fctx, model->hparams.n_head,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
    GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));

    model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
    GGUF_GET_KEY(fctx, model->hparams.n_rot,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));

    float rope_freq_scale = 1.0f;
    GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
    GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
    GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
    if (rope_freq_scale != 1.0f) {
        model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
    }

    init_model(model);

    read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
    read_tensor_by_name(model->norm,           f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
    read_tensor_by_name(model->output,         f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));

    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
        auto & layer = model->layers[i];

        read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
        read_tensor_by_name(layer.wq,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
        read_tensor_by_name(layer.wk,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
        read_tensor_by_name(layer.wv,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
        read_tensor_by_name(layer.wo,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
        read_tensor_by_name(layer.ffn_norm,       f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
        read_tensor_by_name(layer.w1,             f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
        read_tensor_by_name(layer.w2,             f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
        read_tensor_by_name(layer.w3,             f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
    }
}

void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
    const char * arch = "llama";
    enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;

    std::vector<char> keybuf;
    keybuf.resize(512);
    auto kv = [arch, &keybuf](const char * key) -> const char * {
        snprintf(keybuf.data(), keybuf.size(), key, arch);
        return keybuf.data();
    };

    // set arch
    gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
    gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);

    // set hparams
    gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH),              model->hparams.n_ctx                  );
    gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH),            model->hparams.n_embd                 );
    gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH),         model->hparams.n_ff                   );
    gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT),        model->hparams.n_head                 );
    gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT),                 model->hparams.n_layer                );
    gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT),        model->hparams.n_rot                  );

    gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps         );
    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE),              model->hparams.rope_freq_base         ); // TODO load in llama.cpp
    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR),           1.0f / model->hparams.rope_freq_scale );

    // set vocab by copying from vocab_model gguf file
    {
        struct gguf_init_params params = {
            /*.no_alloc = */ false,
            /*.ctx      = */ NULL,
        };
        struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);

        const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
        if (token_idx == -1) {
            die("cannot find tokenizer vocab in model file");
        }
        const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);

        const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
        if (score_idx == -1) {
            die("cannot find tokenizer scores in model file");
        }

        const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);

        const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
        if (toktype_idx == -1) {
            die("cannot find token type list in GGUF file");
        }

        const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);

        std::string tokenizer_name;
        GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));

        gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
        gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
        gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);

        int32_t special_bos_id = 1;
        int32_t special_eos_id = 2;
        int32_t special_unk_id = 0;
        int32_t special_sep_id = -1;
        int32_t special_pad_id = -1;
        if (tokenizer_name == "llama") {
            // default special tokens
            special_bos_id = 1;
            special_eos_id = 2;
            special_unk_id = 0;
            special_sep_id = -1;
            special_pad_id = -1;
        } else if (tokenizer_name == "gpt2") {
            // read and copy bpe merges
            const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
            if (merges_keyidx == -1) {
                die("cannot find tokenizer merges in model file");
            }

            const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);

            std::vector<const char*> merges;
            merges.resize(n_merges);
            for (int i = 0; i < n_merges; i++) {
                merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
            }
            gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);

            // default special tokens
            special_bos_id = 11;
            special_eos_id = 11;
            special_unk_id = -1;
            special_sep_id = -1;
            special_pad_id = -1;
        } else {
            fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
            fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
        }

        std::vector<const char*> tokens;
        tokens.resize(n_vocab);
        for (uint32_t i = 0; i < n_vocab; i++) {
            tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
        }
        gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);

        GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
        GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
        GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
        GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
        GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));

        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);

        gguf_free(vctx);
    }

    // add tensors
    gguf_add_tensor(fctx, model->tok_embeddings);
    gguf_add_tensor(fctx, model->norm);
    gguf_add_tensor(fctx, model->output);
    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
        auto & layer = model->layers[i];


        gguf_add_tensor(fctx, layer.attention_norm);
        gguf_add_tensor(fctx, layer.wq);
        gguf_add_tensor(fctx, layer.wk);
        gguf_add_tensor(fctx, layer.wv);
        gguf_add_tensor(fctx, layer.wo);
        gguf_add_tensor(fctx, layer.ffn_norm);
        gguf_add_tensor(fctx, layer.w1);
        gguf_add_tensor(fctx, layer.w2);
        gguf_add_tensor(fctx, layer.w3);
    }
}

void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
    struct gguf_context * fctx = gguf_init_empty();

    save_llama_model_gguf(fctx, fn_vocab_model, model);

    // write file
    const bool only_meta = false;
    gguf_write_to_file(fctx, filename, only_meta);
    gguf_free(fctx);
}

void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) {
    load_llama_model_gguf(fctx, f_ggml_ctx, model);

    uint32_t file_version;
    GGUF_GET_KEY(fctx, file_version,         gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION);
    GGML_ASSERT(file_version == 0);

    GGUF_GET_KEY(fctx, model->train_its,     gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT);
    GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT);
    GGUF_GET_KEY(fctx, model->train_tokens,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT);

    load_opt_context_gguf(fctx, f_ggml_ctx, opt);
}

void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
    save_llama_model_gguf(fctx, fn_vocab_model, model);

    gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION,    0);
    gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its);
    gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT,    model->train_samples);
    gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT,     model->train_tokens);

    save_opt_context_gguf(fctx, opt);
}

bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) {
    struct ggml_context * f_ggml_ctx;
    struct gguf_init_params params;
    params.no_alloc = false;
    params.ctx = &f_ggml_ctx;
    struct gguf_context * fctx = gguf_init_from_file(filename, params);
    if (fctx == NULL) {
        return false;
    }

    load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt);

    return true;
}

void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
    struct gguf_context * fctx = gguf_init_empty();

    save_checkpoint_gguf(fctx, fn_vocab_model, model, opt);

    // write file
    const bool only_meta = false;
    gguf_write_to_file(fctx, filename, only_meta);
    gguf_free(fctx);
}

float cosine_decay(const int decay_steps, const float minimum, int step) {
    if (step > decay_steps) {
        step = decay_steps;
    }
    const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
    const float decay = (1 - minimum)*cosine_decay + minimum;
    return decay;
}

float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) {
    if (enable_restart) {
        while (step > decay_steps) {
            step -= decay_steps;
            decay_steps = (int) restart_step_mult * decay_steps;
        }
    }
    return cosine_decay(decay_steps, minimum, step);
}

struct train_params {
    const char * fn_vocab_model;
    const char * fn_train_data;
    const char * fn_checkpoint_in;
    const char * fn_checkpoint_out;
    const char * fn_model_out;

    uint32_t seed;

    int n_ctx;
    int n_embd;
    int n_head;
    int n_layer;
    int n_ff;

    int n_threads;
    int n_batch;
    int n_examples;

    float f_norm_rms_eps;
    float rope_freq_base;
    float rope_freq_scale;

    int print_info_interval;

    bool samples_start_after_nl;
    bool use_adam;
    bool use_flash;
    bool use_checkpointing;
    bool use_alloc;

    // only adam
    int   warmup;
    int   cos_decay_steps;
    float cos_decay_restart;
    float cos_decay_min;
    bool  enable_restart;

    int   opt_past;
    float opt_delta;
    int   opt_max_no_improvement;

    int   lbfgs_n_iter;
    int   adam_n_iter;
    float adam_alpha;
    float adam_min_alpha;
    float adam_decay;
    int   adam_decay_min_ndim;
    float adam_beta1;
    float adam_beta2;
    float adam_gclip;
    float adam_eps_f;

    int mem_model_gb;
    int mem_compute_gb;
    int mem_compute0_gb;
};

struct train_params get_default_train_params() {
    struct train_params params;
    params.fn_vocab_model    = "ggml-vic7b-uncensored-q4_0.bin";
    params.fn_train_data     = "shakespeare.txt";
    params.fn_checkpoint_in  = "checkpoint.bin";
    params.fn_checkpoint_out = "checkpoint.bin";
    params.fn_model_out      = "ggml-checkpoint-f32.bin";

    params.seed       =   -1;

    params.n_ctx      =  128;
    params.n_embd     =  256;
    params.n_head     =    8;
    params.n_layer    =   16;
    params.n_ff       =  768;

    params.n_threads  =    6;
    params.n_batch    =    8;
    params.n_examples =    1;

    params.f_norm_rms_eps  = 1e-5;
    params.rope_freq_base  = 10000.0f;
    params.rope_freq_scale = 1.0f;

    params.print_info_interval    = 1;

    params.samples_start_after_nl = false;
    params.use_adam               = true;
    params.use_flash              = true;
    params.use_checkpointing      = true;
    params.use_alloc              = true;

    params.opt_past               = 0;
    params.opt_delta              = 1e-5f;
    params.opt_max_no_improvement = 0;

    // only adam
    params.warmup            =  100;
    params.cos_decay_steps   = 1000;
    params.cos_decay_restart = 1.1f;
    params.cos_decay_min     = 0.1f;
    params.enable_restart    = false;

    params.lbfgs_n_iter        = 256;
    params.adam_n_iter         = 256;
    params.adam_alpha          = 1e-3f;
    params.adam_min_alpha      = 0;
    params.adam_decay          = 1e-1f;
    params.adam_decay_min_ndim = 2;
    params.adam_beta1          = 0.9f;
    params.adam_beta2          = 0.999f;
    params.adam_gclip          = 1.0f;
    params.adam_eps_f          = 0.0f;

    params.mem_model_gb   =  2;
    params.mem_compute_gb = 24;
    params.mem_compute0_gb = 8;
    return params;
}

void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help                 show this help message and exit\n");
    fprintf(stderr, "  --vocab-model FNAME        model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
    fprintf(stderr, "  --train-data FNAME         path from which to load training data (default '%s')\n", params->fn_train_data);
    fprintf(stderr, "  --checkpoint-in FNAME      path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
    fprintf(stderr, "  --checkpoint-out FNAME     path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
    fprintf(stderr, "  --model-out FNAME          path to save ggml model (default '%s')\n", params->fn_model_out);
    fprintf(stderr, "  -s SEED, --seed SEED       RNG seed (default: -1, use random seed for -1)\n");
    fprintf(stderr, "  -c N, --ctx N              Context size used during training (default %d)\n", params->n_ctx);
    fprintf(stderr, "  --embd N                   Embedding size used for new models (default %d)\n", params->n_embd);
    fprintf(stderr, "  --ff N                     Feedforward size used for new models. (default %d)\n", params->n_ff);
    fprintf(stderr, "  --head N                   Number of heads for new models (default %d)\n", params->n_head);
    fprintf(stderr, "  --layer N                  Number of layers for new models (default %d)\n", params->n_layer);
    fprintf(stderr, "  --norm-rms-eps F           RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
    fprintf(stderr, "  --rope-freq-base F         Frequency base for ROPE (default %f)\n", params->rope_freq_base);
    fprintf(stderr, "  --rope-freq-scale F        Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
    fprintf(stderr, "  -t N, --threads N          Number of threads (default %d)\n", params->n_threads);
    fprintf(stderr, "  -b N, --batch N            Parallel batch size (default %d)\n", params->n_batch);
    fprintf(stderr, "  -n N, --examples N         Number of examples to train (default %d)\n", params->n_examples);
    fprintf(stderr, "  --print-info-interval N    Print infos during training each N examples (default %d)\n", params->print_info_interval);
    fprintf(stderr, "  --samples-after-nl         Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off");
    fprintf(stderr, "  --use-lbfgs                Use LBFGS optimizer instead of default Adam\n");
    fprintf(stderr, "  --use-adam                 Use Adam optimizer (default)\n");
    fprintf(stderr, "  --no-flash                 Don't use flash attention \n");
    fprintf(stderr, "  --use-flash                Use flash attention (default)\n");
    fprintf(stderr, "  --no-checkpointing         Don't use gradient checkpointing\n");
    fprintf(stderr, "  --use-checkpointing        Use gradient checkpointing (default)\n");
    fprintf(stderr, "  --no-alloc                 Don't use allocator\n");
    fprintf(stderr, "  --use-alloc                Use allocator (default)\n");
    fprintf(stderr, "  --warmup N                 Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup);
    fprintf(stderr, "  --cos-decay-steps N        Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
    fprintf(stderr, "  --cos-decay-restart N      Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
    fprintf(stderr, "  --cos-decay-min N          Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min);
    fprintf(stderr, "  --enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : "");
    fprintf(stderr, "  --disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : "");
    fprintf(stderr, "  --opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past);
    fprintf(stderr, "  --opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta);
    fprintf(stderr, "  --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement);
    fprintf(stderr, "  --adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
    fprintf(stderr, "  --adam-iter N              Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
    fprintf(stderr, "  --adam-alpha N             Adam learning rate alpha (default %f)\n", params->adam_alpha);
    fprintf(stderr, "  --adam-min-alpha N         Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha);
    fprintf(stderr, "  --adam-decay N             AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
    fprintf(stderr, "  --adam-decay-min-ndim N    Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim);
    fprintf(stderr, "  --adam-beta1 N             AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1);
    fprintf(stderr, "  --adam-beta2 N             AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
    fprintf(stderr, "  --adam-gclip N             AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
    fprintf(stderr, "  --lbfgs-iter N             Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter);
    fprintf(stderr, "  --mem-model N              Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb);
    fprintf(stderr, "  --mem-compute N            Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb);
    fprintf(stderr, "  --mem-compute0 N           Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb);
    fprintf(stderr, "\n");
}

bool train_params_parse(int argc, char ** argv, struct train_params * params) {
    bool invalid_param = false;
    std::string arg;
    struct train_params default_params = get_default_train_params();
    const std::string arg_prefix = "--";

    for (int i = 1; i < argc; i++) {
        arg = argv[i];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }

        if (arg == "--vocab-model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_vocab_model = argv[i];
        } else if (arg == "--train-data") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_train_data = argv[i];
        } else if (arg == "--checkpoint-in") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_checkpoint_in = argv[i];
        } else if (arg == "--checkpoint-out") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_checkpoint_out = argv[i];
        } else if (arg == "--model-out") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->fn_model_out = argv[i];
        } else if (arg == "-s" || arg == "--seed") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->seed = std::stoi(argv[i]);
        } else if (arg == "-c" || arg == "--ctx") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_ctx = std::stoi(argv[i]);
        } else if (arg == "--embd") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_embd = std::stoi(argv[i]);
        } else if (arg == "--ff") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_ff = std::stoi(argv[i]);
        } else if (arg == "--head") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_head = std::stoi(argv[i]);
        } else if (arg == "--layer") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_layer = std::stoi(argv[i]);
        } else if (arg == "--norm-rms-eps") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->f_norm_rms_eps = std::stof(argv[i]);
        } else if (arg == "--rope-freq-base") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->rope_freq_base = std::stof(argv[i]);
        } else if (arg == "--rope-freq-scale") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->rope_freq_scale = std::stof(argv[i]);
        } else if (arg == "-t" || arg == "--threads") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_threads = std::stoi(argv[i]);
        } else if (arg == "-b" || arg == "--batch") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_batch = std::stoi(argv[i]);
        } else if (arg == "-n" || arg == "--examples") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->n_examples = std::stoi(argv[i]);
        } else if (arg == "--print-info-interval") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->print_info_interval = std::stoi(argv[i]);
        } else if (arg == "--samples-after-nl") {
            params->samples_start_after_nl = true;
        } else if (arg == "--use-lbfgs") {
            params->use_adam = false;
        } else if (arg == "--use-adam") {
            params->use_adam = true;
        } else if (arg == "--no-flash") {
            params->use_flash = false;
        } else if (arg == "--use-flash") {
            params->use_flash = true;
        } else if (arg == "--no-checkpointing") {
            params->use_checkpointing = false;
        } else if (arg == "--use-checkpointing") {
            params->use_checkpointing = true;
        } else if (arg == "--no-alloc") {
            params->use_alloc = false;
        } else if (arg == "--use-alloc") {
            params->use_alloc = true;
        } else if (arg == "--warmup") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->warmup = std::stoi(argv[i]);
        } else if (arg == "--cos-decay-steps") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->cos_decay_steps = std::stof(argv[i]);
        } else if (arg == "--cos-decay-restart") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->cos_decay_restart = std::stof(argv[i]);
        } else if (arg == "--cos-decay-min") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->cos_decay_min = std::stof(argv[i]);
        } else if (arg == "--enable-restart") {
            params->enable_restart = true;
        } else if (arg == "--disable-restart") {
            params->enable_restart = false;
        } else if (arg == "--opt-past") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->opt_past = std::stoi(argv[i]);
        } else if (arg == "--opt-delta") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->opt_delta = std::stof(argv[i]);
        } else if (arg == "--opt-max-no-improvement") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->opt_max_no_improvement = std::stoi(argv[i]);
        } else if (arg == "--adam-epsf") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_eps_f = std::stof(argv[i]);
        } else if (arg == "--adam-iter") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_n_iter = std::stoi(argv[i]);
        } else if (arg == "--adam-alpha") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_alpha = std::stof(argv[i]);
        } else if (arg == "--adam-min-alpha") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_min_alpha = std::stof(argv[i]);
        } else if (arg == "--adam-decay") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_decay = std::stof(argv[i]);
        } else if (arg == "--adam-decay-min-ndim") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_decay_min_ndim = std::stoi(argv[i]);
        } else if (arg == "--adam-beta1") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_beta1 = std::stof(argv[i]);
        } else if (arg == "--adam-beta2") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_beta2 = std::stof(argv[i]);
        } else if (arg == "--adam-gclip") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->adam_gclip = std::stof(argv[i]);
        } else if (arg == "--lbfgs-iter") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->lbfgs_n_iter = std::stoi(argv[i]);
        } else if (arg == "--mem-model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->mem_model_gb = std::stoi(argv[i]);
        } else if (arg == "--mem-compute") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->mem_compute_gb = std::stoi(argv[i]);
        } else if (arg == "--mem-compute0") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params->mem_compute0_gb = std::stoi(argv[i]);
        } else if (arg == "-h" || arg == "--help") {
            train_print_usage(argc, argv, &default_params);
            exit(0);
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            train_print_usage(argc, argv, &default_params);
            exit(1);
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        train_print_usage(argc, argv, &default_params);
        exit(1);
    }

    return true;
}

struct opt_callback_data {
    struct train_params *     params;
    struct ggml_opt_context * opt;
    struct llama_context *    lctx;
    llama_token *             tokens_data;
    size_t                    tokens_size;
    int *                     samples_data;
    size_t                    samples_size;
    int                       shuffle_countdown;
    struct ggml_tensor *      tokens_input;
    struct ggml_tensor *      target_logits;
    struct ggml_tensor *      target_probs;
};

void opt_callback(void * vdata, float * sched) {
    struct opt_callback_data * data = (struct opt_callback_data *) vdata;
    struct train_params * params    = data->params;
    struct ggml_opt_context * opt   = data->opt;
    int n_batch = params->n_batch;

    *sched = (opt->iter < params->warmup)
                ? (float) opt->iter / (float) params->warmup
                : cosine_decay_restart(
                    params->cos_decay_steps,
                    params->cos_decay_min,
                    opt->iter - params->warmup,
                    params->cos_decay_restart,
                    params->enable_restart);
    float min_sched = params->adam_min_alpha / params->adam_alpha;
    *sched = min_sched + *sched * (1.0f - min_sched);

    int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f);
    printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);

    if (data->shuffle_countdown < n_batch) {
        printf("%s: reshuffle samples\n", __func__);
        shuffle_ints(data->samples_data, data->samples_data + data->samples_size);
        for (int i = 0; i < (int) data->samples_size; ++i) {
            GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size);
        }
        data->shuffle_countdown = data->samples_size;
    }

    get_example_targets_batch(
        data->lctx,
        data->samples_data,
        data->samples_size,
        data->tokens_data,
        data->tokens_size,
        opt->iter,
        data->tokens_input,
        data->target_logits,
        data->target_probs);

    data->shuffle_countdown -= n_batch;
}

int main(int argc, char ** argv) {
    struct train_params params = get_default_train_params();

    if (!train_params_parse(argc, argv, &params)) {
        return 1;
    }

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }
    printf("%s: seed: %u\n", __func__, params.seed);
    srand(params.seed);

    struct llama_context_params llama_params = llama_context_default_params();
    llama_params.vocab_only = true;

    struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params);
    struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);

    printf("%s: tokenize training data\n", __func__);
    std::vector<llama_token> train_tokens;
    if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) {
        fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data);
    }
    printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size());

    struct my_llama_model model;
    model.hparams.n_vocab = llama_n_vocab(lctx);
    model.hparams.n_ctx   = params.n_ctx;
    model.hparams.n_embd  = params.n_embd;
    model.hparams.n_head  = params.n_head;
    model.hparams.n_layer = params.n_layer;
    model.hparams.n_ff    = params.n_ff;
    // llama.cpp requires n_rot to be exactly n_embd / n_head
    model.hparams.n_rot   = model.hparams.n_embd / model.hparams.n_head;
    model.hparams.f_norm_rms_eps  = params.f_norm_rms_eps;
    model.hparams.rope_freq_base  = params.rope_freq_base;
    model.hparams.rope_freq_scale = params.rope_freq_scale;

    print_params(&model.hparams);

    std::vector<size_t> token_noccurs;
    std::vector<bool>   token_notavail;
    token_noccurs.resize(model.hparams.n_vocab, 0);
    token_notavail.resize(model.hparams.n_vocab, true);
    for (int i = 0; i < (int) train_tokens.size(); ++i) {
        ++token_noccurs[train_tokens[i]];
        token_notavail[train_tokens[i]] = false;
    }

    std::vector<float> token_freq;
    token_freq.resize(model.hparams.n_vocab, 0);
    int n_unique_tokens = 0;
    for (int i = 0; i < (int) token_noccurs.size(); ++i) {
        token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size();
        n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0;
    }
    printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);

    struct ggml_init_params lcparams;
    lcparams.mem_size   = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
    lcparams.mem_buffer = NULL;
    lcparams.no_alloc   = false;

    model.ctx = ggml_init(lcparams);

    int n_tokens = model.hparams.n_ctx;
    int n_vocab  = model.hparams.n_vocab;
    int n_batch  = params.n_batch;

    struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
    memset(opt, 0, sizeof(struct ggml_opt_context));

    struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
    struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
    opt_params_adam.print_forward_graph  = false;
    opt_params_adam.print_backward_graph = false;
    opt_params_adam.n_threads            = params.n_threads;
    opt_params_adam.past                 = params.opt_past;
    opt_params_adam.delta                = params.opt_delta;
    opt_params_adam.max_no_improvement   = params.opt_max_no_improvement;
    opt_params_adam.adam.n_iter          = params.adam_n_iter;
    opt_params_adam.adam.sched           = 1.0f;
    opt_params_adam.adam.alpha           = params.adam_alpha;
    opt_params_adam.adam.decay           = params.adam_decay;
    opt_params_adam.adam.decay_min_ndim  = params.adam_decay_min_ndim;
    opt_params_adam.adam.beta1           = params.adam_beta1;
    opt_params_adam.adam.beta2           = params.adam_beta2;
    opt_params_adam.adam.gclip           = params.adam_gclip;
    opt_params_adam.adam.eps_f           = params.adam_eps_f;

    opt_params_lbfgs.print_forward_graph  = false;
    opt_params_lbfgs.print_backward_graph = false;
    opt_params_lbfgs.n_threads            = params.n_threads;
    opt_params_adam.past                  = params.opt_past;
    opt_params_adam.delta                 = params.opt_delta;
    opt_params_adam.max_no_improvement    = params.opt_max_no_improvement;
    opt_params_lbfgs.lbfgs.n_iter         = params.lbfgs_n_iter;

    opt->ctx = model.ctx;
    opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;

    printf("%s: init model\n", __func__);
    bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt);
    if (!existed) {
        init_model(&model);
    }
    set_param_model(&model);

    opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;

    opt->iter = model.train_its;
    printf("%s: opt iter %d\n", __func__, opt->iter);

    bool from_scratch = !existed;
    if (from_scratch) {
        randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f);
    }

    printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx));
    // ggml_print_tensor_objects(model.ctx);

    // TODO: use std::vector<uint8_t> intead of "new"
    size_t    compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb);
    uint8_t * compute_addr = new uint8_t[compute_size];

    size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb);
    uint8_t * compute_buf_0 = new uint8_t[size_buf_0];

    ggml_allocr * alloc = NULL;
    if (params.use_alloc) {
        static const size_t tensor_alignment = 32;
        alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment);
    }

    GGML_ASSERT(n_tokens < (int) train_tokens.size());
    std::vector<int> train_samples;
    train_samples.push_back(0);
    for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
        if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
            train_samples.push_back(i);
        }
    }
    shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
    for (int i = 0; i < (int) train_samples.size(); ++i) {
        GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
    }

    printf("%s: begin training\n", __func__);

    struct opt_callback_data opt_cb_data;
    opt_cb_data.params = &params;
    opt_cb_data.opt = opt;
    opt_cb_data.lctx = lctx;
    opt_cb_data.tokens_data = train_tokens.data();
    opt_cb_data.tokens_size = train_tokens.size();
    opt_cb_data.samples_data = train_samples.data();
    opt_cb_data.samples_size = train_samples.size();
    opt_cb_data.shuffle_countdown = train_samples.size();
    opt_cb_data.tokens_input  = NULL;
    opt_cb_data.target_logits = NULL;
    opt_cb_data.target_probs  = NULL;

    int64_t t0 = ggml_time_ms();

    for (int ex = 0; ex < params.n_examples; ++ex) {
        if (ex*n_batch >= (int) train_samples.size()) {
            shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
            for (int i = 0; i < (int) train_samples.size(); ++i) {
                GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
            }
        }

        struct ggml_init_params cparams = {
            compute_size, // mem_size
            compute_addr, // mem_buffer
            false,        // no_alloc
        };
        struct ggml_context * ctx0 = ggml_init(cparams);

        ggml_set_no_alloc(ctx0, false);

        // don't use alloc for input tensors, so we can safely fill them with data
        //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
        //struct ggml_tensor * after_opt_probs        = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
        struct ggml_tensor * tokens_input           = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
        struct ggml_tensor * target_logits          = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
        struct ggml_tensor * target_probs           = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);

        ggml_set_no_alloc(ctx0, (alloc != NULL));

        if (alloc) {
            ggml_allocr_reset(alloc);
        }

        opt_cb_data.tokens_input  = tokens_input;
        opt_cb_data.target_logits = target_logits;
        opt_cb_data.target_probs  = target_probs;

        int n_past = 0;

        struct ggml_cgraph * gf = ggml_new_graph(ctx0);
        struct ggml_cgraph * gb = ggml_new_graph(ctx0);
        struct ggml_cgraph * gb_tmp = params.use_checkpointing
            ? ggml_new_graph(ctx0)
            : NULL;

        GGML_ASSERT(n_past == 0);

        struct ggml_tensor * loss   = NULL;
        struct ggml_tensor * logits = NULL;

        loss = llama_build_train_graphs(
            &model, alloc, ctx0,
            gf, gb, gb_tmp,
            &logits, tokens_input, target_probs,
            n_tokens, n_batch,
            params.use_flash,
            params.use_checkpointing
        );

        size_t used_mem_before_opt = ggml_used_mem(ctx0);

        opt->params.adam.sched = (opt->iter < params.warmup)
            ? (float) opt->iter / (float) params.warmup
            : cosine_decay_restart(
                params.cos_decay_steps,
                params.cos_decay_min,
                opt->iter - params.warmup,
                params.cos_decay_restart,
                params.enable_restart);

        float min_sched = params.adam_min_alpha / params.adam_alpha;
        opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched);

        printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched);

        ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data);

        size_t used_mem_after_opt = ggml_used_mem(ctx0);

        int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter;
        model.train_its = opt->iter;
        model.train_samples += n_batch * n_iter;
        model.train_tokens  += n_batch * n_tokens * n_iter;

        if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) {
            printf("Example %d, opt iter %d\n", ex, opt->iter);
            printf("error_before_opt: %.6f\n", opt->loss_before);
            printf("error_after_opt:  %.6f\n", opt->loss_after);
            printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt);
            printf("used_mem_after_opt:  %zu bytes\n", used_mem_after_opt);
        }

        ggml_free(ctx0);
    }

    int64_t t1 = ggml_time_ms();
    int64_t d  = t1-t0;
    double  dd = (double) d * 1e-3;
    printf("%s: total training time=%f seconds\n", __func__, dd);

    if (params.n_examples > 0) {
        save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt);
    }

    if (strlen(params.fn_model_out) > 0) {
        save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model);
    }

    if (alloc) {
        ggml_allocr_free(alloc);
    }

    delete[] compute_addr;
    delete[] compute_buf_0;
    ggml_free(model.ctx);
    llama_free(lctx);
    llama_free_model(lmodel);
    return 0;
}