File size: 7,659 Bytes
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "common.h"
#include "llama.h"

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>

int main(int argc, char ** argv) {
    gpt_params params;

    if (argc == 1 || argv[1][0] == '-') {
        printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
        return 1 ;
    }

    int n_parallel = 1;

    if (argc >= 2) {
        params.model = argv[1];
    }

    if (argc >= 3) {
        params.prompt = argv[2];
    }

    if (argc >= 4) {
        n_parallel = std::atoi(argv[3]);
    }

    if (params.prompt.empty()) {
        params.prompt = "Hello my name is";
    }

    // total length of the sequences including the prompt
    const int n_len = 32;

    // init LLM

    llama_backend_init(params.numa);

    // initialize the model

    llama_model_params model_params = llama_model_default_params();

    // model_params.n_gpu_layers = 99; // offload all layers to the GPU

    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

    if (model == NULL) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    // tokenize the prompt

    std::vector<llama_token> tokens_list;
    tokens_list = ::llama_tokenize(model, params.prompt, true);
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;

    // initialize the context

    llama_context_params ctx_params = llama_context_default_params();

    ctx_params.seed  = 1234;
    ctx_params.n_ctx = n_kv_req;
    ctx_params.n_batch = std::max(n_len, n_parallel);
    ctx_params.n_threads = params.n_threads;
    ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);

    if (ctx == NULL) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

    const int n_ctx    = llama_n_ctx(ctx);

    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);

    // make sure the KV cache is big enough to hold all the prompt and generated tokens
    if (n_kv_req > n_ctx) {
        LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__,  n_kv_req);
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
        return 1;
    }

    // print the prompt token-by-token

    fprintf(stderr, "\n");

    for (auto id : tokens_list) {
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
    }

    fflush(stderr);

    // create a llama_batch with size 512
    // we use this object to submit token data for decoding

    llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);

    // evaluate the initial prompt
    batch.n_tokens = tokens_list.size();

    for (int32_t i = 0; i < batch.n_tokens; i++) {
        batch.token[i]  = tokens_list[i];
        batch.pos[i]    = i;
        batch.seq_id[i] = 0;
        batch.logits[i] = false;
    }

    // llama_decode will output logits only for the last token of the prompt
    batch.logits[batch.n_tokens - 1] = true;

    if (llama_decode(ctx, batch) != 0) {
        LOG_TEE("%s: llama_decode() failed\n", __func__);
        return 1;
    }

    // assign the system KV cache to all parallel sequences
    // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
    for (int32_t i = 1; i < n_parallel; ++i) {
        llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
    }

    if (n_parallel > 1) {
        LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
    }

    // main loop

    // we will store the parallel decoded sequences in this vector
    std::vector<std::string> streams(n_parallel);

    // remember the batch index of the last token for each parallel sequence
    // we need this to determine which logits to sample from
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);

    int n_cur    = batch.n_tokens;
    int n_decode = 0;

    const auto t_main_start = ggml_time_us();

    while (n_cur <= n_len) {
        // prepare the next batch
        batch.n_tokens = 0;

        // sample the next token for each parallel sequence / stream
        for (int32_t i = 0; i < n_parallel; ++i) {
            if (i_batch[i] < 0) {
                // the stream has already finished
                continue;
            }

            auto   n_vocab = llama_n_vocab(model);
            auto * logits  = llama_get_logits_ith(ctx, i_batch[i]);

            std::vector<llama_token_data> candidates;
            candidates.reserve(n_vocab);

            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
            }

            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

            const int   top_k = 40;
            const float top_p = 0.9f;
            const float temp  = 0.4f;

            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
            llama_sample_temp (ctx, &candidates_p, temp);

            const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);

            //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);

            // is it an end of stream? -> mark the stream as finished
            if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
                i_batch[i] = -1;
                LOG_TEE("\n");
                if (n_parallel > 1) {
                    LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
                }

                continue;
            }

            // if there is only one stream, we print immediately to stdout
            if (n_parallel == 1) {
                LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
                fflush(stdout);
            }

            streams[i] += llama_token_to_piece(ctx, new_token_id);

            // push this new token for next evaluation
            batch.token [batch.n_tokens] = new_token_id;
            batch.pos   [batch.n_tokens] = n_cur;
            batch.seq_id[batch.n_tokens] = i;
            batch.logits[batch.n_tokens] = true;

            i_batch[i] = batch.n_tokens;

            batch.n_tokens += 1;

            n_decode += 1;
        }

        // all streams are finished
        if (batch.n_tokens == 0) {
            break;
        }

        n_cur += 1;

        // evaluate the current batch with the transformer model
        if (llama_decode(ctx, batch)) {
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
            return 1;
        }
    }

    LOG_TEE("\n");

    if (n_parallel > 1) {
        LOG_TEE("\n");

        for (int32_t i = 0; i < n_parallel; ++i) {
            LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
        }
    }

    const auto t_main_end = ggml_time_us();

    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));

    llama_print_timings(ctx);

    fprintf(stderr, "\n");

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}