File size: 5,332 Bytes
69fb50e
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
f57d7c6
 
69fb50e
 
 
f57d7c6
69fb50e
 
 
f57d7c6
69fb50e
 
 
f57d7c6
69fb50e
 
 
46c2bfc
 
 
f57d7c6
69fb50e
dc53b3a
69fb50e
46c2bfc
 
 
69fb50e
46c2bfc
 
 
69fb50e
f57d7c6
 
69fb50e
 
 
46c2bfc
 
 
 
 
 
 
 
 
f57d7c6
 
46c2bfc
 
 
 
 
f57d7c6
69fb50e
 
f57d7c6
69fb50e
46c2bfc
 
 
 
69fb50e
46c2bfc
 
 
 
69fb50e
 
 
46c2bfc
 
 
69fb50e
f57d7c6
 
69fb50e
 
f57d7c6
69fb50e
46c2bfc
 
69fb50e
46c2bfc
69fb50e
46c2bfc
 
f57d7c6
46c2bfc
 
 
 
 
 
69fb50e
46c2bfc
 
69fb50e
46c2bfc
 
 
 
69fb50e
46c2bfc
 
 
 
 
 
 
 
f57d7c6
46c2bfc
 
 
69fb50e
46c2bfc
 
69fb50e
46c2bfc
 
 
69fb50e
46c2bfc
69fb50e
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fb50e
46c2bfc
 
 
 
 
69fb50e
46c2bfc
69fb50e
46c2bfc
69fb50e
 
46c2bfc
69fb50e
46c2bfc
 
 
 
 
f57d7c6
69fb50e
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
69fb50e
dc53b3a
 
69fb50e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include "common.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <string>
#include <vector>

int main(int argc, char ** argv) {
    gpt_params params;

    if (argc == 1 || argv[1][0] == '-') {
        printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
        return 1 ;
    }

    if (argc >= 2) {
        params.model = argv[1];
    }

    if (argc >= 3) {
        params.prompt = argv[2];
    }

    if (params.prompt.empty()) {
        params.prompt = "Hello my name is";
    }

    // total length of the sequence including the prompt
    const int n_len = 32;

    // init LLM

    llama_backend_init(params.numa);

    // initialize the model

    llama_model_params model_params = llama_model_default_params();

    // model_params.n_gpu_layers = 99; // offload all layers to the GPU

    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

    if (model == NULL) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    // initialize the context

    llama_context_params ctx_params = llama_context_default_params();

    ctx_params.seed  = 1234;
    ctx_params.n_ctx = 2048;
    ctx_params.n_threads = params.n_threads;
    ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);

    if (ctx == NULL) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

    // tokenize the prompt

    std::vector<llama_token> tokens_list;
    tokens_list = ::llama_tokenize(ctx, params.prompt, true);

    const int n_ctx    = llama_n_ctx(ctx);
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());

    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);

    // make sure the KV cache is big enough to hold all the prompt and generated tokens
    if (n_kv_req > n_ctx) {
        LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
        return 1;
    }

    // print the prompt token-by-token

    fprintf(stderr, "\n");

    for (auto id : tokens_list) {
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
    }

    fflush(stderr);

    // create a llama_batch with size 512
    // we use this object to submit token data for decoding

    llama_batch batch = llama_batch_init(512, 0);

    // evaluate the initial prompt
    batch.n_tokens = tokens_list.size();

    for (int32_t i = 0; i < batch.n_tokens; i++) {
        batch.token[i]  = tokens_list[i];
        batch.pos[i]    = i;
        batch.seq_id[i] = 0;
        batch.logits[i] = false;
    }

    // llama_decode will output logits only for the last token of the prompt
    batch.logits[batch.n_tokens - 1] = true;

    if (llama_decode(ctx, batch) != 0) {
        LOG_TEE("%s: llama_decode() failed\n", __func__);
        return 1;
    }

    // main loop

    int n_cur    = batch.n_tokens;
    int n_decode = 0;

    const auto t_main_start = ggml_time_us();

    while (n_cur <= n_len) {
        // sample the next token
        {
            auto   n_vocab = llama_n_vocab(model);
            auto * logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);

            std::vector<llama_token_data> candidates;
            candidates.reserve(n_vocab);

            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
            }

            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

            // sample the most likely token
            const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);

            // is it an end of stream?
            if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
                LOG_TEE("\n");

                break;
            }

            LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
            fflush(stdout);

            // prepare the next batch
            batch.n_tokens = 0;

            // push this new token for next evaluation
            batch.token [batch.n_tokens] = new_token_id;
            batch.pos   [batch.n_tokens] = n_cur;
            batch.seq_id[batch.n_tokens] = 0;
            batch.logits[batch.n_tokens] = true;

            batch.n_tokens += 1;

            n_decode += 1;
        }

        n_cur += 1;

        // evaluate the current batch with the transformer model
        if (llama_decode(ctx, batch)) {
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
            return 1;
        }
    }

    LOG_TEE("\n");

    const auto t_main_end = ggml_time_us();

    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));

    llama_print_timings(ctx);

    fprintf(stderr, "\n");

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}